Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Language
Journal subject
Publication year range
1.
Biol Res ; 45(3): 231-42, 2012.
Article in English | MEDLINE | ID: mdl-23283433

ABSTRACT

Most cells of the developing mammalian brain derive from the ventricular (VZ) and the subventricular (SVZ) zones. The VZ is formed by the multipotent radial glia/neural stem cells (NSCs) while the SVZ harbors the rapidly proliferative neural precursor cells (NPCs). Evidence from human and animal models indicates that the common history of hydrocephalus and brain maldevelopment starts early in embryonic life with disruption of the VZ and SVZ. We propose that a "cell junction pathology" involving adherent and gap junctions is a final common outcome of a wide range of gene mutations resulting in proteins abnormally expressed by the VZ cells undergoing disruption. Disruption of the VZ during fetal development implies the loss of NSCs whereas VZ disruption during the perinatal period implies the loss of ependyma. The process of disruption occurs in specific regions of the ventricular system and at specific stages of brain development. This explains why only certain brain structures have an abnormal development, which in turn results in a specific neurological impairment of the newborn. Disruption of the VZ of the Sylvian aqueduct (SA) leads to aqueductal stenosis and hydrocephalus, while disruption of the VZ of telencephalon impairs neurogenesis. We are currently investigating whether grafting of NSCs/neurospheres from normal rats into the CSF of hydrocephalic mutants helps to diminish/repair the outcomes of VZ disruption.


Subject(s)
Hydrocephalus/therapy , Intercellular Junctions/pathology , Neural Stem Cells/pathology , Stem Cell Transplantation/methods , Animals , Cell Differentiation , Cell Proliferation , Cerebral Aqueduct/pathology , Cerebral Ventricles/embryology , Cerebral Ventricles/pathology , Humans , Hydrocephalus/pathology , Neural Stem Cells/transplantation , Neurogenesis , Rats
2.
J Neurosci ; 30(13): 4528-35, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20357103

ABSTRACT

The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Prion Diseases/metabolism , Prions/metabolism , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/chemistry , Animals , Brain/metabolism , Brain/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , PrPSc Proteins/chemistry , PrPSc Proteins/metabolism , Prion Diseases/pathology , Prions/chemistry , Protein Folding
3.
Biol. Res ; 45(3): 231-241, 2012. ilus
Article in English | LILACS | ID: lil-659281

ABSTRACT

Most cells of the developing mammalian brain derive from the ventricular (VZ) and the subventricular (SVZ) zones. The VZ is formed by the multipotent radial glia/neural stem cells (NSCs) while the SVZ harbors the rapidly proliferative neural precursor cells (NPCs). Evidence from human and animal models indicates that the common history of hydrocephalus and brain maldevelopment starts early in embryonic life with disruption of the VZ and SVZ. We propose that a "cell junction pathology" involving adherent and gap junctions is a final common outcome of a wide range of gene mutations resulting in proteins abnormally expressed by the VZ cells undergoing disruption. Disruption of the VZ during fetal development implies the loss of NSCs whereas VZ disruption during the perinatal period implies the loss of ependyma. The process of disruption occurs in specific regions of the ventricular system and at specific stages of brain development. This explains why only certain brain structures have an abnormal development, which in turn results in a specific neurological impairment of the newborn. Disruption of the VZ of the Sylvian aqueduct (SA) leads to aqueductal stenosis and hydrocephalus, while disruption of the VZ of telencephalon impairs neurogenesis. We are currently investigating whether grafting of NSCs/neurospheres from normal rats into the CSF of hydrocephalic mutants helps to diminish/repair the outcomes of VZ disruption.


Subject(s)
Animals , Humans , Rats , Hydrocephalus/therapy , Intercellular Junctions/pathology , Neural Stem Cells/pathology , Stem Cell Transplantation/methods , Cell Differentiation , Cell Proliferation , Cerebral Aqueduct/pathology , Cerebral Ventricles/embryology , Cerebral Ventricles/pathology , Hydrocephalus/pathology , Neurogenesis , Neural Stem Cells/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL