Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Immunity ; 57(2): 364-378.e9, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301651

ABSTRACT

Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.


Subject(s)
Bone Marrow , Histone Acetyltransferases , Humans , Histone Acetyltransferases/metabolism , Bone Marrow/metabolism , Histones/metabolism , Neutrophils/metabolism , Hypothalamo-Hypophyseal System/metabolism
2.
Biomed Chromatogr ; 38(4): e5819, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148286

ABSTRACT

The small molecule A-485 competitively inhibits the histone acetyltransferase domain of CBP (cyclic-adenosine monophosphate response element-binding protein)/p300. Apart from its antineoplastic activity, researchers are exploring its potential benefits in treating osteoporosis and its impact on energy metabolism. However, so far, only limited pharmacokinetic data are available, and the crucial determination of A-485 concentration in various biological materials with small sample volumes remains unpublished. A rapid and sensitive LC-tandem mass spectrometry method has been developed and validated to quantify A-485 in mouse serum and tissue. In this method, serum samples underwent precipitation with acetonitrile, while cell lysates were appropriately diluted. The determination of A-485 utilized a reversed-phase column with a mobile phase gradient, and detection was carried out in multiple reaction monitoring mode. The lower standard sample, with a concentration of 7.8 ng/mL, served as the lower limit of quantification, while the upper standard was established at 1000 ng/mL. A-485 concentrations were assessed in both serum samples and the lysate of all examined tissues, revealing swift metabolic clearance. The analytical method outlined here is deemed appropriate for subsequent studies. The ability to measure the active ingredient in various compartments facilitates the determination of accurate pharmacokinetic parameters. In the event of human use of A-485, the analysis method can be seamlessly transferred to human samples.


Subject(s)
Antineoplastic Agents , Tandem Mass Spectrometry , Mice , Animals , Humans , Tandem Mass Spectrometry/methods , Acetyl Coenzyme A , Limit of Detection , Chromatography, Liquid/methods
3.
Gut ; 72(1): 168-179, 2023 01.
Article in English | MEDLINE | ID: mdl-35365572

ABSTRACT

OBJECTIVE: Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD. DESIGN: IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD. RESULTS: IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury. CONCLUSION: Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Humans , Mice , Animals , Interleukin-11/metabolism , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Hepatitis, Alcoholic/metabolism , Ethanol/toxicity , Ethanol/metabolism , Hepatocytes/metabolism , Inflammation/metabolism , Liver Cirrhosis/pathology , Mice, Inbred C57BL
4.
Clin Chem Lab Med ; 60(1): 109-117, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34687595

ABSTRACT

OBJECTIVES: Dickkopf-1 (DKK1) is a secreted protein, known for suppressing the differentiation and activity of bone-building osteoblasts by acting as an inhibitor of Wnt-signalling. Soluble DKK1 (sDKK1) has been proposed as prognostic biomarker for a wide range of malignancies, however, clinical relevance of sDKK1 as potential blood-based marker for ovarian cancer is unknown. METHODS: sDKK1 levels were quantified in a cohort of 150 clinically documented ovarian cancer patients by a commercially available DKK1 ELISA (Biomedica, Vienna, Austria). RESULTS: Median sDKK1 level was significantly elevated at primary diagnosis of ovarian cancer compared to healthy controls (estimated difference (ED) of 7.75 ng/mL (95% CI: 3.01-12.30 ng/mL, p=0.001)). Higher levels of sDKK1 at diagnosis indicated an increased volume of intraoperative malignant ascites (ED 7.08 pmol/L, 95% CI: 1.46-13.05, p=0.02) and predicted suboptimal debulking surgery (ED 6.88 pmol/L, 95% CI: 1.73-11.87, p=0.01). sDKK1 did not correlate with CA125 and higher sDKK1 levels predicted a higher risk of recurrence and poor survival (PFS: HR=0.507, 95% CI: 0.317-0.809; p=0.004; OS: HR=0.561, 95% CI: 0.320-0.986; p=0.044). Prognostic relevance of sDKK1 was partly sustained in wtBRCA patients (PFS: HR=0.507, 95% CI: 0.317-0.809; p=0.004). CONCLUSIONS: This is the first study demonstrating the prognostic relevance of sDKK1 in ovarian cancer patients, including those with wtBRCA1/2 status. Our data encourage further evaluation of sDKK1 in ovarian cancer patients, possibly in terms of a therapy monitoring marker or a response predictor for sDKK1-directed targeted therapies.


Subject(s)
Ovarian Neoplasms , Peritoneal Neoplasms , Ascites , Biomarkers, Tumor , CA-125 Antigen , Carcinoma, Ovarian Epithelial , Female , Humans , Intercellular Signaling Peptides and Proteins , Ovarian Neoplasms/metabolism , Prognosis
5.
Gut ; 70(3): 585-594, 2021 03.
Article in English | MEDLINE | ID: mdl-32699098

ABSTRACT

OBJECTIVE: Alcohol-related liver disease (ALD) is a global healthcare problem with limited treatment options. Alpha-1 antitrypsin (AAT, encoded by SERPINA1) shows potent anti-inflammatory activities in many preclinical and clinical trials. In our study, we aimed to explore the role of AAT in ALD. DESIGN: An unselected cohort of 512 patients with cirrhosis was clinically characterised. Survival, clinical and biochemical parameters including AAT serum concentration were compared between patients with ALD and other aetiologies of liver disease. The role of AAT was evaluated in experimental ALD models. RESULTS: Cirrhotic ALD patients with AAT serum concentrations less than 120 mg/dL had a significantly higher risk for death/liver transplantation as compared with patients with AAT serum concentrations higher than 120 mg/dL. Multivariate Cox regression analysis showed that low AAT serum concentration was a NaMELD-independent predictor of survival/transplantation. Ethanol-fed wild-type (wt) mice displayed a significant decline in hepatic AAT compared with pair-fed mice. Therefore, hAAT-Tg mice were ethanol-fed, and these mice displayed protection from liver injury associated with decreased steatosis, hepatic neutrophil infiltration and abated expression of proinflammatory cytokines. To test the therapeutic capability of AAT, ethanol-fed wt mice were treated with human AAT. Administration of AAT ameliorated hepatic injury, neutrophil infiltration and steatosis. CONCLUSION: Cirrhotic ALD patients with AAT concentrations less than 120 mg/dL displayed an increased risk for death/liver transplantation. Both hAAT-Tg mice and AAT-treated wt animals showed protection from ethanol-induced liver injury. AAT could reflect a treatment option for human ALD, especially for alcoholic hepatitis.


Subject(s)
Liver Diseases, Alcoholic/metabolism , alpha 1-Antitrypsin/physiology , Animals , Cytokines/metabolism , Disease Models, Animal , Female , Genotype , Humans , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/mortality , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neutrophil Infiltration/drug effects , Survival Analysis , alpha 1-Antitrypsin/genetics
6.
Eur Radiol ; 31(9): 6489-6499, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33447860

ABSTRACT

OBJECTIVES: To retrospectively assess the periablational 3D safety margin in patients with colorectal liver metastases (CRLM) referred for stereotactic radiofrequency ablation (RFA) and to evaluate its influence on local treatment success. METHODS: Forty-five patients (31 males; mean age 64.5 [range 31-87 years]) with 76 CRLM were treated with stereotactic RFA and retrospectively analyzed. Image fusion of pre- and post-interventional contrast-enhanced CT scans using a non-rigid registration software enabled a retrospective assessment of the percentage of predetermined periablational 3D safety margin and CRLM successfully ablated. Periablational safety zones (1-10 mm) and percentage of periablational zone ablated were calculated, analyzed, and compared with subsequent tumor growth to determine an optimal safety margin predictive of local treatment success. RESULTS: Mean overall follow-up was 36.1 ± 18.5 months. Nine of 76 CRLMs (11.8%) developed local tumor progression (LTP) with mean time to LTP of 18.3 ± 11.9 months. Overall 1-, 2-, and 3-year cumulative LTP-free survival rates were 98.7%, 90.6%, and 88.6%, respectively. The periablational safety margin assessment proved to be the only independent predictor (p < 0.001) of LTP for all calculated safety margins. The smallest safety margin 100% ablated displaying no LTP was 3 mm, and at least 90% of a 6-mm circumscribed 3D safety margin was required to achieve complete ablation. CONCLUSIONS: Volumetric assessment of the periablational safety margin can be used as an intraprocedural tool to evaluate local treatment success in patients with CRLM referred to stereotactic RFA. Ablations achieving 100% 3D safety margin of 3 mm and at least 90% 3D safety margin of 6 mm can predict treatment success. KEY POINTS: • Volumetric assessment of the periablational safety margin can be used as an intraprocedural tool to evaluate local treatment success following thermal ablation of colorectal liver metastases. • Ablations with 100% 3D periablational safety margin of 3 mm and ablations with at least 90% 3D safety margin of 6 mm can be considered indications of treatment success. • Image fusion of pre- and post-interventional CT scans with the software used in this study is feasible and could represent a useful tool in daily clinical practice.


Subject(s)
Catheter Ablation , Colorectal Neoplasms , Liver Neoplasms , Radiofrequency Ablation , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/surgery , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Male , Margins of Excision , Middle Aged , Retrospective Studies , Treatment Outcome
7.
Int J Mol Sci ; 22(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064859

ABSTRACT

Tumor metastasis to bone is a common event in multiple forms of malignancy. Inflammation holds essential functions in homeostasis as a defense mechanism against infections and is a strategy to repair injured tissue and to adapt to stress conditions. However, exaggerated and/or persistent (chronic) inflammation may eventually become maladaptive and evoke diseases such as autoimmunity, diabetes, inflammatory tissue damage, fibrosis, and cancer. In fact, inflammation is now considered a hallmark of malignancy with prognostic relevance. Emerging studies have revealed a central involvement of inflammation in several steps of the metastatic cascade of bone-homing tumor cells through supporting their survival, migration, invasion, and growth. The mechanisms by which inflammation favors these steps involve activation of epithelial-to-mesenchymal transition (EMT), chemokine-mediated homing of tumor cells, local activation of osteoclastogenesis, and a positive feedback amplification of the protumorigenic inflammation loop between tumor and resident cells. In this review, we summarize established and evolving concepts of inflammation-driven tumorigenesis, with a special focus on bone metastasis.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Inflammation/complications , Prostatic Neoplasms/pathology , Animals , Bone Neoplasms/etiology , Breast Neoplasms/immunology , Female , Humans , Male , Prostatic Neoplasms/immunology , Signal Transduction
8.
Biochem Biophys Res Commun ; 524(2): 360-365, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32001001

ABSTRACT

Advanced stages of breast cancer are frequently complicated by bone metastases which cause substantial cancer-related morbidity and mortality. The Wnt-signaling antagonist Dickkopf-1 (DKK-1) has emerged as a crucial factor in the development and progression of osteolytic bone metastases. Although several signaling pathways have been implicated in promoting DKK-1 production in breast cancer cells, pharmacological interventions that interfere with tumor DKK-1 synthesis still remain scarce. In the current study, using an unbiased approach, we identified the small molecule Dorsomorphin as a potent suppressor of DKK-1 in several breast cancer cell lines (MDA-MB-231, MDA-Bone, MDA-MET and MCF7, respectively). Here, Dorsomorphin suppressed DKK-1 mRNA and protein production by 70 and 90%, respectively (p <0.001). Whereas bone morphogenic protein (BMP)- and AMP activated protein kinase (AMPK)-signaling are two well-established targets of Dorsomorphin, we show that neither pathway is essentially involved in facilitating its inhibitory effects on DKK-1. In summary, we identified Dorsomorphin as a potent pharmacological inhibitor of DKK-1 production in breast cancer cells. Whether Dorsomorphin reflects a valuable therapeutic agent in breast cancer warrants further investigations.


Subject(s)
Breast Neoplasms/drug therapy , Intercellular Signaling Peptides and Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Intercellular Signaling Peptides and Proteins/genetics , MCF-7 Cells , RNA, Messenger/genetics , Signal Transduction/drug effects , Wnt Signaling Pathway/drug effects
9.
Cytokine ; 133: 155114, 2020 09.
Article in English | MEDLINE | ID: mdl-32442908

ABSTRACT

Obesity has emerged as a substantial global healthcare issue that is frequently associated with insulin resistance and non-alcoholic fatty liver disease (NAFLD). Tsukushi (TSK), a liver-derived molecule, was recently identified as a major driver of NAFLD. Laparoscopic adjustable gastric banding (LAGB) has proven effective in reducing body weight and improving NAFLD. We therefore aimed to investigate the relation between LAGB-induced weight loss and TSK expression. Twenty-six obese patients undergoing LAGB were included in the study and metabolic parameters were assessed before (t0) and six months after LAGB (t6). The expression of TSK in liver and subcutaneous adipose tissue (AT) specimens was determined at both time points. To unravel regulatory mechanisms of TSK expression, human peripheral blood mononuclear cells (PBMCs) were stimulated with pro-inflammatory cytokines and TSK mRNA levels were analyzed by quantitative polymerase chain reaction. LAGB induced pronounced weight loss which was paralleled by amelioration of metabolic disturbances and histologically defined NAFLD. While hepatic TSK expression was markedly decreased after LAGB, adipose tissue TSK expression remained comparable to baseline. The decline in hepatic TSK expression after LAGB positively correlated with weight loss and the reduction in BMI, and negatively correlated with NAFLD activity score (NAS). In human PBMCs, pro-inflammatory cytokines such as IL-1ß and TNFα induced the expression of TSK. In conclusion, LAGB-induced weight loss reduces hepatic TSK expression. Inhibiting TSK might represent a promising target for treating NAFLD in the future.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Proteoglycans/metabolism , Weight Loss/physiology , Adult , Bariatric Surgery/methods , Cells, Cultured , Cytokines/metabolism , Female , Gastroplasty/methods , Humans , Inflammation/metabolism , Insulin Resistance/physiology , Leukocytes, Mononuclear/metabolism , Male , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Subcutaneous Fat/metabolism
10.
BMC Cancer ; 20(1): 703, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32727400

ABSTRACT

BACKGROUND: Ovarian cancer remains the most fatal gynecological malignancy. Current therapeutic options are limited due to late diagnosis in the majority of the cases, metastatic spread to the peritoneal cavity and the onset of chemo-resistance. Thus, novel therapeutic approaches are required. Statins and amino-bisphosphonates are inhibitors of the mevalonate pathway, which is a fundamental pathway of cellular metabolism, essential for cholesterol production and posttranslational protein farnesylation and geranylgeranylation. While this pathway has emerged as a promising treatment target in several human malignancies, its potential as a therapeutic approach in ovarian cancer is still not fully understood. METHODS: Human ovarian cancer cell lines (IGROV-1, A2780, A2780cis) were treated with increasing concentrations (0.5-100 µM) of statins (simvastatin, atorvastatin, rosuvastatin) and zoledronic acid. Effects on cell vitality and apoptosis were assessed using Cell Titer Blue®, Caspase 3/7 Glo®, clonogenic assays as well as cleaved poly (ADP-ribose) polymerase (cPARP) detection. The inhibition of the mevalonate pathway was confirmed using Western Blot of unprenylated Ras and Rap1a proteins. Quantitative real-time PCR and ELISA were used to analyze modulations on several key regulators of ovarian cancer tumorigenesis. RESULTS: The treatment of IGROV-1 and A2780 cells with statins and zoledronic acid reduced vitality (by up to 80%; p < 0.001) and induced apoptosis by up to 8-folds (p < 0.001) in a dose-dependent fashion. Rescue experiments using farnesyl pyrophosphate or geranylgeranyl pyrophosphate evidenced that blocked geranylgeranylation is the major underlying mechanism of the pro-apoptotic effects. Gene expression of the tumor-promoting cytokines and mediators, such as transforming growth factor (TGF)-ß1, vascular endothelial growth factor (VEGF), interleukin (IL)-8, and IL-6 were significantly suppressed by statins and zoledronic acid by up to 90% (p < 0.001). For all readouts, simvastatin was most potent of all agents used. Cisplatin-resistant A2780cis cells showed a relative resistance to statins and zoledronic acid. However, similar to the effects in A2780 cells, simvastatin and zoledronic acid significantly induced caspase 3/7 activation (6-folds; p < 0.001). CONCLUSION: Our in vitro findings point to promising anti-tumor effects of statins and zoledronic acid in ovarian cancer and warrant additional validation in preclinical and clinical settings.


Subject(s)
Cell Survival/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mevalonic Acid/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Apoptosis/drug effects , Atorvastatin/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Gene Expression/drug effects , Humans , Interleukin-6/genetics , Interleukin-8/drug effects , Interleukin-8/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Polyisoprenyl Phosphates/pharmacology , Prenylation/drug effects , Rosuvastatin Calcium/pharmacology , Sesquiterpenes/pharmacology , Simvastatin/pharmacology , Transforming Growth Factor beta1/drug effects , Transforming Growth Factor beta1/genetics , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor A/genetics , Zoledronic Acid/pharmacology
11.
Liver Int ; 40(7): 1610-1619, 2020 07.
Article in English | MEDLINE | ID: mdl-32306456

ABSTRACT

BACKGROUND & AIMS: Alcohol-related liver disease (ALD) comprises different liver disorders which impose a health care issue. ALD and particularly alcoholic steatohepatitis, an acute inflammatory condition, cause a substantial morbidity and mortality as effective treatment options remain elusive. Inflammation in ALD is fuelled by macrophages (Kupffer cells [KCs]) which are activated by intestinal pathogen associated molecular patterns, eg lipopolysaccharide (LPS), disseminated beyond a defective intestinal barrier. We hypothesized that the immunomodulator dimethyl-fumarate (DMF), which is approved for the treatment of human inflammatory conditions such as multiple sclerosis or psoriasis, ameliorates the course of experimental ALD. METHODS: Dimethyl-fumarate or vehicle was orally administered to wild-type mice receiving a Lieber-DeCarli diet containing 5% ethanol for 15 days. Liver injury, steatosis and inflammation were evaluated by histology, biochemical- and immunoassays. Moreover, we investigated a direct immunosuppressive effect of DMF on KCs and explored a potential impact on ethanol-induced intestinal barrier disruption. RESULTS: Dimethyl-fumarate protected against ethanol-induced hepatic injury, steatosis and inflammation in mice. Specifically, we observed reduced hepatic triglyceride and ALT accumulation, reduced hepatic expression of inflammatory cytokines (Tnf-α, Il-1ß, Cxcl1) and reduced abundance of neutrophils and macrophages in ethanol-fed and DMF-treated mice when compared to vehicle. DMF protected against ethanol-induced barrier disruption and abrogated systemic LPS concentration. In addition, DMF abolished LPS-induced cytokine responses of KCs. CONCLUSIONS: Dimethyl-fumarate counteracts ethanol-induced barrier dysfunction, suppresses inflammatory responses of KCs and ameliorates hepatic inflammation and steatosis, hallmarks of experimental ALD. Our data indicates that DMF treatment might be beneficial in human ALD and respective clinical trials are eagerly awaited.


Subject(s)
Fatty Liver, Alcoholic , Liver Diseases, Alcoholic , Animals , Dimethyl Fumarate/pharmacology , Inflammation/drug therapy , Liver , Liver Diseases, Alcoholic/drug therapy , Mice , Mice, Inbred C57BL
12.
Eur Radiol ; 30(5): 2463-2472, 2020 May.
Article in English | MEDLINE | ID: mdl-32002642

ABSTRACT

OBJECTIVES: To assess the minimal ablative margin (MAM) by image fusion of intraprocedural pre- and post-ablation contrast-enhanced CT images and to evaluate if it can predict local tumor progression (LTP) independently. Furthermore, to determine a MAM with which a stereotactic radiofrequency ablation (SRFA) can be determined successful and therefore used as an intraprocedural tool to evaluate treatment success. METHODS: A total of 110 patients (20 women, 90 men; mean age 63.7 ± 10.2) with 176 hepatocellular carcinomas were assessed by retrospective analysis of prospectively collected data. The MAM was determined through image fusion of intraprocedural pre- and post-ablation images using commercially available rigid imaging registration software. LTP was assessed in contrast-enhanced CTs or MR scans at 3-6-month intervals. RESULTS: The MAM was the only significant independent predictor of LTP (p = 0.036). For each millimeter increase of the MAM, a 30% reduction of the relative risk for LTP was found (OR = 0.7, 95% CI 0.5-0.98, p = 0.036). No LTP was detected in lesions with a MAM > 5 mm. The overall LTP rate was 9 of 110 (8.2%) on a patient level and 10 of 173 (5.7%) on a lesion level. The median MAM was 3.4 (1.7-6.9) mm. The mean overall follow-up period was 26.0 ± 10.3 months. CONCLUSIONS: An immediate assessment of the minimal ablative margin (MAM) can be used as an intraprocedural tool to evaluate the treatment success in patients treated with stereotactic RFA. A MAM > 5 mm has to be achieved to consider an ablation as successful. KEY POINTS: • An intraoperatively measured minimal ablative margin (MAM) > 5 mm correlates with complete remission. • MAM is the only significant independent predictor of LTP (OR = 0.7, 95% CI 0.5-0.98, p = 0.036) after stereotactic RFA of hepatocellular carcinoma. • Image fusion using commercially available rigid imaging registration software is possible, even though considerably complex. Therefore, improved (semi-)automatic fusion software is highly desirable.


Subject(s)
Carcinoma, Hepatocellular/surgery , Catheter Ablation/methods , Liver Neoplasms/surgery , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , Carcinoma, Hepatocellular/diagnosis , Female , Humans , Imaging, Three-Dimensional , Liver Neoplasms/diagnosis , Male , Margins of Excision , Middle Aged , Retrospective Studies , Treatment Outcome
14.
Arch Gynecol Obstet ; 298(1): 217-222, 2018 07.
Article in English | MEDLINE | ID: mdl-29808249

ABSTRACT

PURPOSE: To compare the concentrations of beta endorphin in serum and follicular fluid (FF) of PCOS- and non-PCOS women. Secondarily, to investigate associations between beta endorphin and other parameters. METHODS: Fifty-nine women undergoing in vitro fertilization (IVF) were included in the study. Sixteen were stratified to the PCOS group using the Rotterdam criteria. The remaining 43 women served as controls. Follicular fluid was collected during oocyte retrieval and peripheral blood sampling was performed on the same day. Beta endorphin concentrations in serum and follicular fluid, serum levels of insulin, glucose, LH, estradiol and progesterone were measured. Additionally, testosterone was measured before starting the stimulation protocol. RESULTS: There was no difference in beta endorphin levels between PCOS- and non-PCOS women. The concentration of the peptide was higher in serum than in FF, likely due to collection of FF after ovulation induction and corresponding to the early luteal phase. We found a significant correlation between the number of mature Metaphase II (MII) oocytes retrieved and beta endorphin concentration in FF. In women with biochemical hyperandrogenemia, beta endorphin levels in FF correlated with testosterone levels. CONCLUSION: Beta Endorphin concentrations in serum and FF do not differ between PCOS- and non PCOS-women undergoing IVF. However, together with sex hormones, beta endorphin might play a key role in oocyte maturation.


Subject(s)
Follicular Fluid/metabolism , Polycystic Ovary Syndrome/blood , beta-Endorphin/blood , Adult , Female , Follicular Fluid/cytology , Humans , Young Adult
16.
Lancet Diabetes Endocrinol ; 12(5): 350-364, 2024 May.
Article in English | MEDLINE | ID: mdl-38604215

ABSTRACT

Long-term survivors of cancer (ie, the patient who is considered cured or for whom the disease is under long-term control and unlikely to recur) are at an increased risk of developing endocrine complications such as hypothalamic-pituitary dysfunctions, hypogonadisms, osteoporosis, or metabolic disorders, particularly when intensive tumour-directed therapies are applied. Symptom severity associated with these conditions ranges from mild and subclinical to highly detrimental, affecting individual health and quality of life. Although they are usually manageable, many of these endocrine pathologies remain underdiagnosed and untreated for years. To address this challenge, a higher degree of awareness, standardised screening tools, comprehensible treatment algorithms, and a close collaborative effort between endocrinologists and oncologists are essential to early identify patients who are at risk, and to implement appropriate treatment protocols. This Review highlights common symptoms and conditions related to endocrine disorders among survivors of adult-onset cancer, provides a summary of the currently available practice guidelines, and proposes a practical approach to diagnose affected patients among this group.


Subject(s)
Cancer Survivors , Endocrine System Diseases , Neoplasms , Humans , Endocrine System Diseases/etiology , Endocrine System Diseases/epidemiology , Neoplasms/complications , Adult , Age of Onset
17.
Cell Metab ; 35(9): 1497-1499, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37673035

ABSTRACT

Activation of the hypothalamus-pituitary-adrenal gland (HPA) axis confers adaptations to homeostatic perturbations including food scarcity. A comprehensive new study by Douglass et al. disentangled how agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus (ARC) trigger rapid HPA-axis activation in response to fasting, which is mediated by repression of a tonic, inhibitory neuro circuit.


Subject(s)
Acclimatization , Glucocorticoids , Arcuate Nucleus of Hypothalamus , Fasting , Homeostasis
18.
Trends Endocrinol Metab ; 34(7): 395-403, 2023 07.
Article in English | MEDLINE | ID: mdl-37173233

ABSTRACT

Effective pharmacological treatments to achieve significant and sustained weight loss in obese individuals remain limited. Here, we apply a 'reverse engineering' approach to cancer cachexia, an extreme form of dysregulated energy balance resulting in net catabolism. We discuss three phenotypic features of the disease, summarize the underlying molecular checkpoints, and explore their translation to obesity research. We then provide examples for established pharmaceuticals, which follow a reverse engineering logic, and propose additional targets that may be of relevance for future studies. Finally, we argue that approaching diseases from this perspective may prove useful as a generic strategy to fuel the development of innovative therapies.


Subject(s)
Cachexia , Neoplasms , Humans , Cachexia/drug therapy , Cachexia/etiology , Obesity/metabolism , Neoplasms/complications , Neoplasms/metabolism , Weight Loss
19.
Commun Biol ; 5(1): 1391, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539532

ABSTRACT

Many human diseases, including cancer, share an inflammatory component but the molecular underpinnings remain incompletely understood. We report that physiological and pathological Dickkopf1 (DKK1) activity fuels inflammatory cytokine responses in cell models, mice and humans. DKK1 maintains the elevated inflammatory tone of cancer cells and is required for mounting cytokine responses following ligation of toll-like and cytokine receptors. DKK1-controlled inflammation derives from cell-autonomous mechanisms, which involve SOCS3-restricted, nuclear RelA (p65) activity. We translate these findings to humans by showing that genetic DKK1 variants are linked to elevated cytokine production across healthy populations. Finally, we find that genetic deletion of DKK1 but not pharmacological neutralization of soluble DKK1 ameliorates inflammation and disease trajectories in a mouse model of endotoxemia. Collectively, our study identifies a cell-autonomous function of DKK1 in the control of the inflammatory response, which is conserved between malignant and non-malignant cells. Additional studies are required to mechanistically dissect cellular DKK1 trafficking and signaling pathways.


Subject(s)
Cytokines , Intercellular Signaling Peptides and Proteins , Humans , Animals , Mice , Intercellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , Signal Transduction , Inflammation/genetics
20.
J Clin Endocrinol Metab ; 107(12): 3370-3377, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36071553

ABSTRACT

CONTEXT AND AIMS: Coronavirus disease 19 (COVID-19) trajectories show high interindividual variability, ranging from asymptomatic manifestations to fatal outcomes, the latter of which may be fueled by immunometabolic maladaptation of the host. Reliable identification of patients who are at risk of severe disease remains challenging. We hypothesized that serum concentrations of Dickkopf1 (DKK1) indicate disease outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals. METHODS: We recruited hospitalized patients with PCR-confirmed SARS-CoV-2 infection and included 80 individuals for whom blood samples from 2 independent time points were available. DKK1 serum concentrations were measured by ELISA in paired samples. Clinical data were extracted from patient charts and correlated with DKK1 levels. Publicly available datasets were screened for changes in cellular DKK1 expression on SARS-CoV-2 infection. Plasma metabolites were profiled by nuclear magnetic resonance spectroscopy in an unbiased fashion and correlated with DKK1 data. Kaplan-Meier and Cox regression analysis were used to investigate the prognostic value of DKK1 levels in the context of COVID-19. RESULTS: We report that serum levels of DKK1 predict disease outcomes in patients with COVID-19. Circulating DKK1 concentrations are characterized by high interindividual variability and change as a function of time during SARS-CoV-2 infection, which is linked to platelet counts. We further find that the metabolic signature associated with SARS-CoV-2 infection resembles fasting metabolism and is mirrored by circulating DKK1 abundance. Patients with low DKK1 levels are twice as likely to die from COVID-19 than those with high levels, and DKK1 predicts mortality independent of markers of inflammation, renal function, and platelet numbers. CONCLUSION: Our study suggests a potential clinical use of circulating DKK1 as a predictor of disease outcomes in patients with COVID-19. These results require validation in additional cohorts.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Enzyme-Linked Immunosorbent Assay
SELECTION OF CITATIONS
SEARCH DETAIL