Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Ecology ; 100(2): e02569, 2019 02.
Article in English | MEDLINE | ID: mdl-30506556

ABSTRACT

The risk of ecosystem function degradation with biodiversity loss has emerged as a major scientific concern in recent years. Possible relationships between taxonomic diversity and magnitude and stability of ecosystem processes build upon species' functional characteristics, which determine both susceptibility to environmental change and contribution to ecosystem properties. The functional diversity within communities thus provides a potential buffer against environmental disturbance, especially for properties emerging from interactions among species. In complex plant-pollinator networks, distantly related taxa spanning a great trait diversity shape network architecture. Here, we address the question of whether network properties are maintained after habitat loss by complementary contributions of phylogenetically distant pollinator taxa. We quantified contributions of wild bees and hoverflies to network structure (connectance, network specialization, specialization asymmetry) in 32 calcareous grassland fragments varying in size. Although hoverflies are often regarded less susceptible to environmental change than wild bees, species richness of both taxa was similarly affected by habitat loss. The associated loss of 80% of interactions resulted in small and tightly connected networks, which was more strongly attributed to wild bee loss than hoverfly loss. Networks in small fragments were less specialized due to equivalent losses of species and interactions in both pollinators and plants. Because wild bee and hoverfly loss contributed similarly to declining network specialization, we conclude that trait diversity among distantly related pollinators does not necessarily provide insurance against functional homogenization during community disassembly following habitat loss.


Subject(s)
Ecosystem , Pollination , Animals , Bees , Biodiversity , Plants/classification
2.
Ecol Appl ; 23(8): 1938-46, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24555319

ABSTRACT

Landscape-wide mass-flowering of oilseed rape (canola Brassica napus) can considerably affect wild bee communities and pollination success of wild plants. We aimed to assess the impact of oilseed rape on the pollination of wild plants and bee abundance during and after oilseed-rape bloom, including effects on crop-noncrop spillover at landscape and adjacent-field scales. We focused on two shrub species (hawthorn Crataegus spp., dog rose Rosa canina) and adjacent herb flowering in forest edges, connected hedges, and isolated hedges in Lower Saxony, Germany. We selected 35 landscape circles of 1 km radius, differing in the amount of oilseed rape; 18 were adjacent to oilseed rape and 17 to cereal fields, and we quantified bee density via pan traps at all sites. Adjacent oilseed rape positively affected fruit mass and seed number per fruit of simultaneously flowering hawthorn (no effect on dog rose, which flowers after the oilseed rape bloom). At the landscape scale, oilseed rape had a negative effect on bumble bee density in the hedges during flowering due to dilution of pollinators per unit area and the consequently intensified competition between oilseed rape and wild shrubs, but a positive effect after flowering when bees moved to the hedges, which still provided resources. In contrast, positive landscape-scale effects of oilseed rape were found throughout the season in forest edges, suggesting that edges support nesting activity and enhanced food resources. Our results show that oilseed rape effects on bee abundances and pollination success in seminatural habitats depend on the spatial and temporal scale considered and on the habitat type, the wild plant species, and the time of crop flowering. These scale-dependent positive and negative effects should be considered in evaluations of landscape-scale configuration and composition of crops. Food resources provided by mass-flowering crops should be most beneficial for landscape-wide enhancement of wild bee populations if seminatural habitats are available, providing (1) nesting resources and (2) continuous flowering resources during the season.


Subject(s)
Bees/physiology , Brassica napus/physiology , Crataegus/physiology , Crops, Agricultural/physiology , Pollination/physiology , Rosa/physiology , Animals , Population Density , Time Factors
3.
Nat Ecol Evol ; 2(9): 1408-1417, 2018 09.
Article in English | MEDLINE | ID: mdl-30082735

ABSTRACT

Habitat fragmentation is a primary threat to biodiversity, but how it affects the structure and stability of ecological networks is poorly understood. Here, we studied plant-pollinator and host-parasitoid networks on 32 calcareous grassland fragments covering a size gradient of several orders of magnitude and with amounts of additional habitat availability in the surrounding landscape that varied independent of fragment size. We find that additive and interactive effects of habitat fragmentation at local (fragment size) and landscape scales (1,750 m radius) directly shape species communities by altering the number of interacting species and, indirectly, their body size composition. These, in turn, affect plant-pollinator, but not host-parasitoid, network structure: the nestedness and modularity of plant-pollinator networks increase with pollinator body size. Moreover, pollinator richness increases modularity. In contrast, the modularity of host-parasitoid networks decreases with host richness, whereas neither parasitoid richness nor body size affects network structure. Simulating species coextinctions also reveals that the structure-stability relationship depends on species' sensitivity to coextinctions and their capacity for adaptive partner switches, which differ between mutualistic and antagonistic interaction partners. While plant-pollinator communities may cope with future habitat fragmentation by responding to species loss with opportunistic partner switches, past effects of fragmentation on the current structure of host-parasitoid networks may strongly affect their robustness to coextinctions under future habitat fragmentation.


Subject(s)
Bees/parasitology , Ecosystem , Host-Parasite Interactions , Magnoliopsida , Pollination , Wasps/parasitology , Animals , Diptera/physiology , Flowers
4.
Sci Rep ; 6: 31153, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27509831

ABSTRACT

Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.


Subject(s)
Bees/physiology , Animals , Bees/classification , Conservation of Natural Resources , Geography
SELECTION OF CITATIONS
SEARCH DETAIL