Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Cell Sci ; 137(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38465512

ABSTRACT

Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.


Subject(s)
Cell Polarity , Epithelial Cells , Animals , Humans , Epithelial Cells/metabolism , Cell Membrane/metabolism , Cell Polarity/genetics , Mammals
2.
Nature ; 587(7832): 126-132, 2020 11.
Article in English | MEDLINE | ID: mdl-32879494

ABSTRACT

Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.


Subject(s)
Chromosomal Instability/genetics , Evolution, Molecular , Karyotype , Neoplasm Metastasis/genetics , Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 8/genetics , Clone Cells/metabolism , Clone Cells/pathology , Cyclin E/genetics , DNA Copy Number Variations/genetics , Female , Humans , Loss of Heterozygosity/genetics , Male , Mutagenesis , Neoplasm Metastasis/pathology , Neoplasms/pathology , Oncogene Proteins/genetics
3.
Gastroenterology ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866343

ABSTRACT

BACKGROUND: Patient-derived organoids (PDO) are promising tumor avatars that could enable ex vivo drug tests to personalize patients' treatment in the frame of functional precision oncology (FPM). Yet, clinical evidence remain scarce. This study aims to evaluate whether PDO can be implemented in clinical practice to benefit patients with advanced refractory pancreatic adenocarcinoma (PDAC). METHODS: During 2021-2022, 87 patients were prospectively enrolled in an IRB-approved protocol. Inclusion criteria were: histologically-confirmed PDAC, tumor site accessible. A panel of 25 approved antitumor therapies (chemogram) was tested and compared to patient responses to assess PDO predictive values and map the drug sensitivity landscape in PDAC. RESULTS: Fifty-four PDOs were generated from 87 pretreated patients (take-on rate 62%). The main PDO mutations were KRAS (96%), TP53 (88%) and CDKN2A/B (22%), with 91% concordance rate with their tumor of origin. The mean turnaround-time to chemogram was 6.8 weeks. In 91% of cases, ≥1 hit was identified (gemcitabine (n=20/54), docetaxel (n=18/54) and vinorelbine (n=17/54) with a median of 3 hits/patient [range:0-12]). Our cohort included 34 evaluable patients with full clinical follow-up. We report a chemogram sensitivity of 83.3% and specificity of 92.9%. The overall-response rate and progression-free survival were higher when patients received a "hit" treatment as compared to patients that received a "non-hit" drug (as part of routine management). Finally, we leveraged our PDO collection as a platform for drug validation and combo identification. We tested the anti-KRASG12D (MRTX1133), alone or combined, and identified a specific synergy with anti-EGFR therapies in KRASG12D variants. CONCLUSION: We report the largest prospective study aiming at implementing PDO-based FPM and identify very robust predictive values in this clinical setting. In a clinically relevant turnaround-time, we identify putative hits for 91% of patients, providing unexpected potential survival benefits in this very aggressive indication. While this remains to be confirmed in interventional precision oncology trials, PDO collection already provide powerful opportunities for drugs and combinatorial treatment development.

4.
J Cell Sci ; 135(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35703098

ABSTRACT

The metastatic progression of cancer remains a major issue in patient treatment. However, the molecular and cellular mechanisms underlying this process remain unclear. Here, we use primary explants and organoids from patients harboring mucinous colorectal carcinoma (MUC CRC), a poor-prognosis histological form of digestive cancer, to study the architecture, invasive behavior and chemoresistance of tumor cell intermediates. We report that these tumors maintain a robust apico-basolateral polarity as they spread in the peritumoral stroma or organotypic collagen-I gels. We identified two distinct topologies - MUC CRCs either display a conventional 'apical-in' polarity or, more frequently, harbor an inverted 'apical-out' topology. Transcriptomic analyses combined with interference experiments on organoids showed that TGFß and focal adhesion signaling pathways are the main drivers of polarity orientation. Finally, we show that the apical-out topology is associated with increased resistance to chemotherapeutic treatments in organoids and decreased patient survival in the clinic. Thus, studies on patient-derived organoids have the potential to bridge histological, cellular and molecular analyses to decrypt onco-morphogenic programs and stratify cancer patients. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Colorectal Neoplasms , Organoids , Cell Adhesion , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , Signal Transduction , Transforming Growth Factor beta/metabolism
5.
EMBO J ; 38(14): e99299, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31304629

ABSTRACT

The metastatic progression of cancer is a multi-step process initiated by the local invasion of the peritumoral stroma. To identify the mechanisms underlying colorectal carcinoma (CRC) invasion, we collected live human primary cancer specimens at the time of surgery and monitored them ex vivo. This revealed that conventional adenocarcinomas undergo collective invasion while retaining their epithelial glandular architecture with an inward apical pole delineating a luminal cavity. To identify the underlying mechanisms, we used microscopy-based assays on 3D organotypic cultures of Caco-2 cysts as a model system. We performed two siRNA screens targeting Rho-GTPases effectors and guanine nucleotide exchange factors. These screens revealed that ROCK2 inhibition triggers the initial leader/follower polarization of the CRC cell cohorts and induces collective invasion. We further identified FARP2 as the Rac1 GEF necessary for CRC collective invasion. However, FARP2 activation is not sufficient to trigger leader cell formation and the concomitant inhibition of Myosin-II is required to induce invasion downstream of ROCK2 inhibition. Our results contrast with ROCK pro-invasive function in other cancers, stressing that the molecular mechanism of metastatic spread likely depends on tumour types and invasion mode.


Subject(s)
Adenocarcinoma/metabolism , Cell Culture Techniques/methods , Colorectal Neoplasms/metabolism , rho-Associated Kinases/metabolism , Adenocarcinoma/genetics , Animals , Caco-2 Cells , Cell Line, Tumor , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/metabolism , Humans , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Organoids/cytology , Organoids/metabolism , RNA, Small Interfering/pharmacology , rho-Associated Kinases/genetics
6.
J Cell Sci ; 129(5): 957-70, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26759174

ABSTRACT

The kinesin KIF17 localizes at microtubule plus-ends where it contributes to regulation of microtubule stabilization and epithelial polarization. We now show that KIF17 localizes at cell-cell adhesions and that KIF17 depletion inhibits accumulation of actin at the apical pole of cells grown in 3D organotypic cultures and alters the distribution of actin and E-cadherin in cells cultured in 2D on solid supports. Overexpression of full-length KIF17 constructs or truncation mutants containing the N-terminal motor domain resulted in accumulation of newly incorporated GFP-actin into junctional actin foci, cleared E-cadherin from cytoplasmic vesicles and stabilized cell-cell adhesions to challenge with calcium depletion. Expression of these KIF17 constructs also increased cellular levels of active RhoA, whereas active RhoA was diminished in KIF17-depleted cells. Inhibition of RhoA or its effector ROCK, or expression of LIMK1 kinase-dead or activated cofilin(S3A) inhibited KIF17-induced junctional actin accumulation. Interestingly, KIF17 activity toward actin depends on the motor domain but is independent of microtubule binding. Together, these data show that KIF17 can modify RhoA-GTPase signaling to influence junctional actin and the stability of the apical junctional complex of epithelial cells.


Subject(s)
Actin Cytoskeleton/metabolism , Epithelial Cells/physiology , Kinesins/physiology , rhoA GTP-Binding Protein/metabolism , Actin Depolymerizing Factors/metabolism , Animals , Antigens, CD , Cadherins/metabolism , Cell Adhesion , Dogs , Epithelial Cells/ultrastructure , Lim Kinases/metabolism , Madin Darby Canine Kidney Cells , Microtubules/metabolism , Protein Binding , Protein Transport , Signal Transduction , rho-Associated Kinases/metabolism
7.
Biomedicines ; 12(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38540202

ABSTRACT

Colorectal cancer (CRC) is the second cause of cancer-related death; the CpG-island methylation pathway (CIMP) is associated with KRAS/BRAF mutations, two oncogenes rewiring cell metabolism, worse prognosis, and resistance to classical chemotherapies. Despite this, the question of a possible metabolic rewiring in CIMPs has never been investigated. Here, we analyse whether metabolic dysregulations are associated with tumour methylation by evaluating the transcriptome of CRC tumours. CIMP-high patients were found to present a hypermetabolism, activating mainly carbohydrates, folates, sphingolipids, and arachidonic acid metabolic pathways. A third of these genes had epigenetic targets of Myc in their proximal promoter, activating carboxylic acid, tetrahydrofolate interconversion, nucleobase, and oxoacid metabolisms. In the Myc signature, the expression of GAPDH, TYMS, DHFR, and TK1 was enough to predict methylation levels, microsatellite instability (MSI), and mutations in the mismatch repair (MMR) machinery, which are strong indicators of responsiveness to immunotherapies. Finally, we discovered that CIMP tumours harboured an increase in genes involved in the one-carbon metabolism, a pathway critical to providing nucleotides for cancer growth and methyl donors for DNA methylation, which is associated with worse prognosis and tumour hypermethylation. Transcriptomics could hence become a tool to help clinicians stratify their patients better.

8.
Eur J Cancer ; 197: 113497, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134480

ABSTRACT

BACKGROUND: KRAS mutation is the most common molecular alteration in pancreatic adenocarcinoma (PDAC), and around 10% of patients harbor KRAS wild-type tumors (KRASWT). METHODS: A retrospective chart review of clinical/molecular data was performed including all PDAC patients with a determined KRAS status (tumor molecular profiling on tissue or liquid biopsy). RESULTS: 342 patients were included with 54 KRASWT PDAC (16%) compared to 288 patients with KRASm PDAC. Median age was 61 years [IQR:54.0;67.0] and 164 pts (48%) were female. At diagnosis, KRASWT patients (63%) were more frequently diagnosed at a non-metastatic stage compared to KRASm patients (41%) (p = 0.003). Regarding metastatic sites, liver was less frequent in KRASWT (39%, p < 0.0001). Median overall survival (mOS) from initial diagnosis was significantly higher in the KRASWT group compared to KRASm (50.8 months, CI95% [32.0-NR] vs 21.1 months, CI95% [18.9-23.4] (p < 0.004 after adjustment on age, ECOG and stage at diagnosis). In first-line systemic treatment, (mostly FOLFIRINOX) progression-free survival (PFS) was also higher in KRASWT. Based on ESCAT classification, a putative actionable alteration (ESCAT I-III) was identified in 19 (36%) KRASWT pts and 46 (16%) KRASm patients (p < 0.0001) with more alterations in FGFR2, BRAF(V600E), NRTK and more MSI tumors. KRASWT harbored also fewer alterations in TP53, CDKN2A, and SMAD4. 12 KRASWT patients received a molecularly-matched treatment with clinical benefit and improved outcomes compared to KRASm patients. CONCLUSIONS: KRASWT patients display distinct disease characteristics and outcomes with prolonged overall survival. KRASWT patients also harbor more actionable molecular alterations, leading to higher survival rates after receiving molecularly matched treatments.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Female , Humans , Male , Middle Aged , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Mutation , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Precision Medicine , Proto-Oncogene Proteins p21(ras)/genetics , Retrospective Studies , Aged
9.
Cancers (Basel) ; 15(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686695

ABSTRACT

BACKGROUND: Despite improvements in characterization of CRC heterogeneity, appropriate risk stratification tools are still lacking in clinical practice. This study aimed to elucidate the primary tumor transcriptomic signatures associated with distinct metastatic routes. METHODS: Primary tumor specimens obtained from CRC patients with either isolated LM (CRC-Liver) or PM (CRC-Peritoneum) were analyzed by transcriptomic mRNA sequencing, gene set enrichment analyses (GSEA) and immunohistochemistry. We further assessed the clinico-pathological associations and prognostic value of our signature in the COAD-TCGA independent cohort. RESULTS: We identified a significantly different distribution of Consensus Molecular Subtypes between CRC-Liver and CRC-peritoneum groups. A transcriptomic signature based on 61 genes discriminated between liver and peritoneal metastatic routes. GSEA showed a higher expression of immune response and epithelial invasion pathways in CRC-Peritoneum samples and activation of proliferation and metabolic pathways in CRC-Liver samples. The biological relevance of RNA-Seq results was validated by the immunohistochemical expression of three significantly differentially expressed genes (ACE2, CLDN18 and DUSP4) in our signature. In silico analysis of the COAD-TCGA showed that the CRC-Peritoneum signature was associated with negative prognostic factors and poor overall and disease-free survivals. CONCLUSIONS: CRC primary tumors spreading to the liver and peritoneum display significantly different transcriptomic profiles. The implementation of this signature in clinical practice could contribute to identify new therapeutic targets for stage IV CRC and to define individualized follow-up programs in stage II-III CRC.

10.
J Exp Clin Cancer Res ; 42(1): 281, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880806

ABSTRACT

BACKGROUND: Patient Derived Organoids (PDOs) emerged as the best technology to develop ex vivo tumor avatars. Whether drug testing on PDOs to identify efficient therapies will bring clinical utility by improving patient survival remains unclear. To test this hypothesis in the frame of clinical trials, PDO technology faces three main challenges to be implemented in routine clinical practices: i) generating PDOs with a limited amount of tumor material; ii) testing a wide panel of anti-cancer drugs; and iii) obtaining results within a time frame compatible with patient disease management. We aimed to address these challenges in a prospective study in patients with colorectal cancer (CRC). METHODS: Fresh surgical or core needle biopsies were obtained from patients with CRC. PDOs were established and challenged with a panel of 25 FDA-approved anti-cancer drugs (chemotherapies and targeted therapies) to establish a scoring method ('chemogram') identifying in vitro responders. The results were analyzed at the scale of the cohort and individual patients when the follow-up data were available. RESULTS: A total of 25 PDOs were successfully established, harboring 94% concordance with the genomic profile of the tumor they were derived from. The take-on rate for PDOs derived from core needle biopsies was 61.5%. A chemogram was obtained with a 6-week median turnaround time (range, 4-10 weeks). At least one hit (mean 6.16) was identified for 92% of the PDOs. The number of hits was inversely correlated to disease metastatic dissemination and the number of lines of treatment the patient received. The chemograms were compared to clinical data obtained from 8 patients and proved to be predictive of their response with 75% sensitivity and specificity. CONCLUSIONS: We show that PDO-based drug tests can be achieved in the frame of routine clinical practice. The chemogram could provide clinicians with a decision-making tool to tailor patient treatment. Thus, PDO-based functional precision oncology should now be tested in interventional trials assessing its clinical utility for patients who do not harbor activable genomic alterations or have developed resistance to standard of care treatments.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Precision Medicine , Prospective Studies , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Organoids
11.
Biol Rev Camb Philos Soc ; 98(5): 1668-1686, 2023 10.
Article in English | MEDLINE | ID: mdl-37157910

ABSTRACT

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.


Subject(s)
Neoplasms , Philosophy , Research , Interdisciplinary Studies
12.
Dev Cell ; 13(4): 511-22, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17925227

ABSTRACT

Microtubule-based vesicular transport is well documented in epithelial cells, but the specific motors involved and their regulation during polarization are largely unknown. We demonstrate that KIF5B mediates post-Golgi transport of an apical protein in epithelial cells, but only after polarity has developed. Time-lapse imaging of EB1-GFP in polarized MDCK cells showed microtubule plus ends growing toward the apical membrane, implying that plus end-directed N-kinesins might be used to transport apical proteins. Indeed, time-lapse microscopy revealed that expression of a KIF5B dominant negative or microinjection of function-blocking KIF5 antibodies inhibited selectively post-Golgi transport of the apical marker, p75-GFP, after polarization of MDCK cells. Expression of other KIF dominant negatives did not alter p75-GFP trafficking. Immunoprecipitation experiments demonstrated an interaction between KIF5B and p75-GFP in polarized, but not in subconfluent, MDCK cells. Our results demonstrate that apical protein transport depends on selective microtubule motors and that epithelial cells switch kinesins for post-Golgi transport during acquisition of polarity.


Subject(s)
Cell Membrane/metabolism , Cell Polarity/physiology , Kinesins/physiology , Membrane Proteins/metabolism , Microtubules/physiology , Animals , Cell Line , Dogs , Epithelial Cells/metabolism , Green Fluorescent Proteins/genetics , Humans , Membrane Proteins/genetics , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
13.
J Cell Sci ; 123(Pt 10): 1732-41, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20427314

ABSTRACT

A key process during epithelial polarization involves establishment of polarized transport routes from the Golgi to distinct apical and basolateral membrane domains. To do this, the machinery involved in selective trafficking must be regulated during differentiation. Our previous studies showed that KIF5B selectively transports vesicles containing p75-neurotrophin receptors to the apical membrane of polarized, but not non-polarized MDCK cells. To identify the kinesin(s) responsible for p75 trafficking in non-polarized MDCK cells we expressed KIF-specific dominant-negative constructs and assayed for changes in post-Golgi transport of p75 by time-lapse fluorescence microscopy. Overexpression of the tail domains of kinesin-3 family members that contain a C-terminal pleckstrin homology (PH) domain, KIF1A or KIF1Bbeta, attenuated the rate of p75 exit from the Golgi in non-polarized MDCK cells but not in polarized cells. Analysis of p75 post-Golgi transport in cells expressing KIF1A or KIF1Bbeta with their PH domains deleted revealed that vesicle transport by these motors depends on the PH domains. Furthermore, purified KIF1A and KIF1Bbeta tails interact with p75 vesicles and these interactions require the PH domain. Knockdown of canine KIF1A also inhibited exit of p75 from the Golgi, and this was rescued by expression of human KIF1A. Together these data demonstrate that post-Golgi transport of p75 in non-polarized epithelial cells is mediated by kinesin-3 family motors in a PH-domain-dependent process.


Subject(s)
Epithelial Cells/metabolism , Kinesins/metabolism , Receptor, Nerve Growth Factor/metabolism , Animals , Cell Line , Cell Polarity , Cloning, Molecular , Dogs , Epithelial Cells/pathology , Golgi Apparatus/metabolism , Hydrogen-Ion Concentration , Kinesins/genetics , Kinesins/isolation & purification , Membrane Microdomains/metabolism , Protein Structure, Tertiary/genetics , Protein Transport/genetics , RNA, Small Interfering/genetics , Transgenes/genetics
14.
Sci Adv ; 8(39): eabp8416, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36179021

ABSTRACT

Cell migration is essential to living organisms and deregulated in cancer. Single cell's migration ranges from traction-dependent mesenchymal motility to contractility-driven propulsive amoeboid locomotion, but collective cell migration has only been described as a focal adhesion-dependent and traction-dependent process. Here, we show that cancer cell clusters, from patients and cell lines, migrate without focal adhesions when confined into nonadhesive microfabricated channels. Clusters coordinate and behave like giant super cells, mobilizing their actomyosin contractility at the rear to power their migration. This polarized cortex does not sustain persistent retrograde flows, of cells or actin, like in the other modes of migration but rather harnesses fluctuating cell deformations, or jiggling. Theoretical physical modeling shows this is sufficient to create a gradient of friction forces and trigger directed cluster motion. This collective amoeboid mode of migration could foster metastatic spread by enabling cells to cross a wide spectrum of environments.

15.
Cancer Discov ; 12(4): 1128-1151, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34930787

ABSTRACT

Gut dysbiosis has been associated with intestinal and extraintestinal malignancies, but whether and how carcinogenesis drives compositional shifts of the microbiome to its own benefit remains an open conundrum. Here, we show that malignant processes can cause ileal mucosa atrophy, with villous microvascular constriction associated with dominance of sympathetic over cholinergic signaling. The rapid onset of tumorigenesis induced a burst of REG3γ release by ileal cells, and transient epithelial barrier permeability that culminated in overt and long-lasting dysbiosis dominated by Gram-positive Clostridium species. Pharmacologic blockade of ß-adrenergic receptors or genetic deficiency in Adrb2 gene, vancomycin, or cohousing of tumor bearers with tumor-free littermates prevented cancer-induced ileopathy, eventually slowing tumor growth kinetics. Patients with cancer harbor distinct hallmarks of this stress ileopathy dominated by Clostridium species. Hence, stress ileopathy is a corollary disease of extraintestinal malignancies requiring specific therapies. SIGNIFICANCE: Whether gut dysbiosis promotes tumorigenesis and how it controls tumor progression remain open questions. We show that 50% of transplantable extraintestinal malignancies triggered a ß-adrenergic receptor-dependent ileal mucosa atrophy, associated with increased gut permeability, sustained Clostridium spp.-related dysbiosis, and cancer growth. Vancomycin or propranolol prevented cancer-associated stress ileopathy. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Dysbiosis , Receptors, Adrenergic, beta , Carcinogenesis/pathology , Dysbiosis/chemically induced , Dysbiosis/complications , Dysbiosis/pathology , Humans , Intestinal Mucosa/pathology , Signal Transduction
16.
Nat Commun ; 11(1): 3200, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581239

ABSTRACT

mTOR activation is essential and sufficient to cause polycystic kidneys in Tuberous Sclerosis Complex (TSC) and other genetic disorders. In disease models, a sharp increase of proliferation and cyst formation correlates with a dramatic loss of oriented cell division (OCD). We find that OCD distortion is intrinsically due to S6 kinase 1 (S6K1) activation. The concomitant loss of S6K1 in Tsc1-mutant mice restores OCD but does not decrease hyperproliferation, leading to non-cystic harmonious hyper growth of kidneys. Mass spectrometry-based phosphoproteomics for S6K1 substrates revealed Afadin, a known component of cell-cell junctions required to couple intercellular adhesions and cortical cues to spindle orientation. Afadin is directly phosphorylated by S6K1 and abnormally decorates the apical surface of Tsc1-mutant cells with E-cadherin and α-catenin. Our data reveal that S6K1 hyperactivity alters centrosome positioning in mitotic cells, affecting oriented cell division and promoting kidney cysts in conditions of mTOR hyperactivity.


Subject(s)
Cell Division , Kinesins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Myosins/metabolism , Polycystic Kidney Diseases/pathology , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Animals , Cell Line , Kinesins/genetics , Mice , Mice, Mutant Strains , Mutation , Myosins/genetics , Phosphorylation , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Signal Transduction , Tuberous Sclerosis/genetics , Tuberous Sclerosis/metabolism , Tuberous Sclerosis/pathology , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism
17.
J Exp Med ; 216(11): 2582-2601, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31395618

ABSTRACT

Transendothelial migration (TEM) of leukocytes across the endothelium is critical for inflammation. In the endothelium, TEM requires the coordination of membrane movements and cytoskeletal interactions, including, prominently, recruitment of the lateral border recycling compartment (LBRC). The scaffold protein IQGAP1 was recently identified in a screen for LBRC-interacting proteins. Knockdown of endothelial IQGAP1 disrupted the directed movement of the LBRC and substantially reduced leukocyte TEM. Expression of truncated IQGAP1 constructs demonstrated that the calponin homology domain is required for IQGAP1 localization to endothelial borders and that the IQ domain, on the same IQGAP1 polypeptide, is required for its function in TEM. This is the first reported function of IQGAP1 requiring two domains to be present on the same polypeptide. Additionally, we show for the first time that IQGAP1 in the endothelium is required for efficient TEM in vivo. These findings reveal a novel function for IQGAP1 and demonstrate that IQGAP1 in endothelial cells facilitates TEM by directing the LBRC to the site of TEM.


Subject(s)
Endothelial Cells/metabolism , Leukocytes/metabolism , Transendothelial and Transepithelial Migration , ras GTPase-Activating Proteins/metabolism , Actin Cytoskeleton/metabolism , Animals , Antigens, CD , Cadherins , Cells, Cultured , Humans , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , Microtubules/metabolism , Protein Transport , RNA Interference , ras GTPase-Activating Proteins/genetics
18.
Cell Death Dis ; 9(7): 716, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29915308

ABSTRACT

Even though cell death modalities elicited by anticancer chemotherapy and radiotherapy have been extensively studied, the ability of anticancer treatments to induce non-cell-autonomous death has never been investigated. By means of multispectral imaging flow-cytometry-based technology, we analyzed the lethal fate of cancer cells that were treated with conventional anticancer agents and co-cultured with untreated cells, observing that anticancer agents can simultaneously trigger cell-autonomous and non-cell-autonomous death in treated and untreated cells. After ionizing radiation, oxaliplatin, or cisplatin treatment, fractions of treated cancer cell populations were eliminated through cell-autonomous death mechanisms, while other fractions of the treated cancer cells engulfed and killed neighboring cells through non-cell-autonomous processes, including cellular cannibalism. Under conditions of treatment with paclitaxel, non-cell-autonomous and cell-autonomous death were both detected in the treated cell population, while untreated neighboring cells exhibited features of apoptotic demise. The transcriptional activity of p53 tumor-suppressor protein contributed to the execution of cell-autonomous death, yet failed to affect the non-cell-autonomous death by cannibalism for the majority of tested anticancer agents, indicating that the induction of non-cell-autonomous death can occur under conditions in which cell-autonomous death was impaired. Altogether, these results reveal that chemotherapy and radiotherapy can induce both non-cell-autonomous and cell-autonomous death of cancer cells, highlighting the heterogeneity of cell death responses to anticancer treatments and the unsuspected potential contribution of non-cell-autonomous death to the global effects of anticancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Bystander Effect , Gamma Rays , Animals , Antineoplastic Agents/therapeutic use , Bystander Effect/drug effects , Bystander Effect/radiation effects , Cell Death/drug effects , Cell Death/radiation effects , Cell Line, Tumor , Cisplatin/pharmacology , Gamma Rays/therapeutic use , HCT116 Cells , Humans , Jurkat Cells , MCF-7 Cells , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/radiotherapy , Oxaliplatin/pharmacology , Paclitaxel/pharmacology , Radiotherapy
19.
Nat Cell Biol ; 20(3): 296-306, 2018 03.
Article in English | MEDLINE | ID: mdl-29403038

ABSTRACT

Metastases account for 90% of cancer-related deaths; thus, it is vital to understand the biology of tumour dissemination. Here, we collected and monitored >50 patient specimens ex vivo to investigate the cell biology of colorectal cancer (CRC) metastatic spread to the peritoneum. This reveals an unpredicted mode of dissemination. Large clusters of cancer epithelial cells displaying a robust outward apical pole, which we termed tumour spheres with inverted polarity (TSIPs), were observed throughout the process of dissemination. TSIPs form and propagate through the collective apical budding of hypermethylated CRCs downstream of canonical and non-canonical transforming growth factor-ß signalling. TSIPs maintain their apical-out topology and use actomyosin contractility to collectively invade three-dimensional extracellular matrices. TSIPs invade paired patient peritoneum explants, initiate metastases in mice xenograft models and correlate with adverse patient prognosis. Thus, despite their epithelial architecture and inverted topology TSIPs seem to drive the metastatic spread of hypermethylated CRCs.


Subject(s)
Biomarkers, Tumor/genetics , Cell Movement , Cell Polarity , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Methylation , Epithelial Cells/pathology , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/secondary , Animals , Biomarkers, Tumor/metabolism , Caco-2 Cells , Colorectal Neoplasms/metabolism , Epithelial Cells/metabolism , Genetic Predisposition to Disease , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness , Peritoneal Neoplasms/metabolism , Phenotype , Prospective Studies , Signal Transduction , Time Factors , Transforming Growth Factor beta/metabolism , Tumor Cells, Cultured , Tumor Microenvironment
20.
Oncotarget ; 8(31): 50359-50375, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28881568

ABSTRACT

Estrogen-related receptor alpha (ERR1) is an orphan nuclear receptor that can bind transcriptional co-activators constitutively. ERR1 expression correlates with poor patient outcomes in breast cancer, heightening interest in this nuclear receptor as a therapeutic target. Because ERR1 has no known regulatory ligand, a major challenge in targeting its activity is to find cellular or synthetic modulators of its function. We identified an interaction between ERR1 and KIF17, a kinesin-2 family microtubule motor, in a yeast-2-hybrid screen. We confirmed the interaction using in vitro biochemical assays and determined that binding is mediated by the ERR1 ligand-binding/AF2 domain and the KIF17 C-terminal tail. Expression of KIF17 tail domain in either ER-negative or ER-positive breast cancer epithelial cells attenuated nuclear accumulation of newly synthesized ERR1 and inhibited ERR1 transcriptional activity. Conversely, ERR1 transcriptional activity was elevated significantly in KIF17 knock-out cells. Sequence analysis of the KIF17 tail domain revealed it contains a nuclear receptor box with a conserved LXXLL motif found in transcriptional co-activators. Expression of a 12 amino-acid peptide containing this motif was sufficient to inhibit ERR1 transcriptional activity and cell invasion, while deletion of this region from the KIF17 tail resulted in increased ERR1 activity. Together, these data suggest KIF17 modifies ERR1 function by two possible, non-exclusive mechanisms: (i) by regulating nuclear-cytoplasmic distribution or (ii) by competing with transcriptional co-activators for binding to ERR1. Thus targeting the ERR1-KIF17 interaction has potential as a novel strategy for treating breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL