Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33278358

ABSTRACT

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Azetidines/administration & dosage , COVID-19 Drug Treatment , COVID-19/immunology , Macaca mulatta , Neutrophil Infiltration/drug effects , Purines/administration & dosage , Pyrazoles/administration & dosage , Sulfonamides/administration & dosage , Animals , COVID-19/physiopathology , Cell Death/drug effects , Cell Degranulation/drug effects , Disease Models, Animal , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Janus Kinases/antagonists & inhibitors , Lung/drug effects , Lung/immunology , Lung/pathology , Lymphocyte Activation/drug effects , Macrophages, Alveolar/immunology , SARS-CoV-2/physiology , Severity of Illness Index , T-Lymphocytes/immunology , Virus Replication/drug effects
2.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33631118

ABSTRACT

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Genetic Vectors/genetics , SARS-CoV-2/immunology , Vaccines, DNA/immunology , Vaccinia virus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/genetics , Disease Models, Animal , Gene Expression , Gene Order , Immunophenotyping , Lung/immunology , Lung/pathology , Lung/virology , Macaca , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Vaccination/methods , Vaccines, DNA/genetics
3.
PLoS Pathog ; 15(10): e1008081, 2019 10.
Article in English | MEDLINE | ID: mdl-31626660

ABSTRACT

Lymph nodes (LN) and their resident T follicular helper CD4+ T cells (Tfh) are a critical site for HIV replication and persistence. Therefore, optimizing antiviral activity in lymphoid tissues will be needed to reduce or eliminate the HIV reservoir. In this study, we retained effector immune cells in LN of cART-suppressed, SIV-infected rhesus macaques by treatment with the lysophospholipid sphingosine-1 phosphate receptor modulator FTY720 (fingolimod). FTY720 was remarkably effective in reducing circulating CD4+ and CD8+ T cells, including those with cytolytic potential, and in increasing the number of these T cells retained in LN, as determined directly in situ by histocytometry and immunohistochemistry. The FTY720-induced inhibition of T cell egress from LN resulted in a measurable decrease of SIV-DNA content in blood as well as in LN Tfh cells in most treated animals. In conclusion, FTY720 administration has the potential to limit viral persistence, including in the critical Tfh cellular reservoir. These findings provide rationale for strategies designed to retain antiviral T cells in lymphoid tissues to target HIV remission.


Subject(s)
Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Lymphopenia/chemically induced , Simian Immunodeficiency Virus/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Female , Germinal Center/immunology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology
4.
J Am Assoc Lab Anim Sci ; 63(3): 268-278, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38423529

ABSTRACT

Nonhuman primates used in biomedical research may experience clinically significant weight loss for a variety of reasons. Episodes of anorexia (complete loss of appetite) or hyporexia (decreased appetite) can result in significant weight loss, potentially altering animal welfare and scientific studies. The FDA has approved several appetite stimulants for use in domestic species, but currently none are approved for use in NHP. Treatment of inappetence and weight loss in NHP often relies on the extralabel use of these compounds. Capromorelin is a ghrelin receptor agonist. As a growth hormone secretagogue, capromorelin increases appetite, leading to weight gain. Studies in several species have shown a positive correlation between capromorelin administration and weight gain; in 2017, an oral solution of capromorelin received FDA approval for use in dogs. We tested this solution in healthy adult rhesus macaques (n = 3 males and 3 females) for its effects on body weight and insulin like growth factor-1 (IGF-1). A control group (n = 2 males and 2 females) was used for comparison. Treated macaques received a 3mg/kg oral dose daily for 7 d. Clinical signs were observed daily. Weights were collected before, during and at the end of treatment. Blood was drawn before, during and after treatment for measurement of IGF-1 levels and standard hematology and biochemistry parameters. Baseline-adjusted mean body weights and IGF-1 levels were significantly higher in treated as compared with control monkeys after 7 d of beginning treatment (body weight of 10.5±0.1kg (mean ± SEM) and 10.1±0.1kg, respectively; IGF-1 of 758±43ng/mL and 639±22ng/mL, respectively). Capromorelin administration was not associated with appreciable changes in hematologic and biochemical values in treated macaques. These findings suggest that capromorelin may be useful for treating inappetence and weight loss in NHP, and based on blood analysis, a 7-d course of treatment does not appear to cause acute toxicity.


Subject(s)
Macaca mulatta , Animals , Male , Female , Insulin-Like Growth Factor I/analysis , Appetite Stimulants/therapeutic use , Appetite Stimulants/administration & dosage , Appetite Stimulants/pharmacology , Body Weight/drug effects , Weight Gain/drug effects , Weight Loss/drug effects , Receptors, Ghrelin/agonists , Piperidines , Pyrazoles
5.
Sci Immunol ; 8(88): eadg7015, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37191508

ABSTRACT

Omicron SARS-CoV-2 variants escape vaccine-induced neutralizing antibodies and cause nearly all current COVID-19 cases. Here, we compared the efficacy of three booster vaccines against Omicron BA.5 challenge in rhesus macaques: mRNA-1273, the Novavax ancestral spike protein vaccine (NVX-CoV2373), or Omicron BA.1 spike protein version (NVX-CoV2515). All three booster vaccines induced a strong BA.1 cross-reactive binding antibody and changed immunoglobulin G (Ig) dominance from IgG1 to IgG4 in the serum. All three booster vaccines also induced strong and comparable neutralizing antibody responses against multiple variants of concern, including BA.5 and BQ.1.1, along with long-lived plasma cells in the bone marrow. The ratio of BA.1 to WA-1 spike-specific antibody-secreting cells in the blood was higher in NVX-CoV2515 animals compared with NVX-CoV2373 animals, suggesting a better recall of BA.1-specific memory B cells by the BA.1 spike-specific vaccine compared with the ancestral spike-specific vaccine. Further, all three booster vaccines induced low levels of spike-specific CD4 but not CD8 T cell responses in the blood. After challenge with SARS-CoV-2 BA.5 variant, all three vaccines showed strong protection in the lungs and controlled virus replication in the nasopharynx. In addition, both Novavax vaccines blunted viral replication in nasopharynx at day 2. The protection against SARS-CoV-2 BA.5 infection in the upper respiratory airways correlated with binding, neutralizing, and ADNP activities of the serum antibody. These data have important implications for COVID-19 vaccine development, because vaccines that lower nasopharyngeal virus may help to reduce transmission.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Animals , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Immunoglobulin G
6.
Sci Immunol ; 7(72): eabo0226, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35357886

ABSTRACT

SARS-CoV-2 vaccines should induce broadly cross-reactive humoral and T cell responses to protect against emerging variants of concern (VOCs). Here, we inactivated the furin cleavage site (FCS) of spike expressed by a modified vaccinia Ankara (MVA) virus vaccine (MVA/SdFCS) and found that FCS inactivation markedly increased spike binding to human ACE2. After vaccination of mice, the MVA/SdFCS vaccine induced eightfold higher neutralizing antibodies compared with MVA/S, which expressed spike without FCS inactivation, and protected against the Beta variant. We next added nucleocapsid to the MVA/SdFCS vaccine (MVA/SdFCS-N) and tested its immunogenicity and efficacy via intramuscular (IM), buccal (BU), or sublingual (SL) routes in rhesus macaques. IM vaccination induced spike-specific IgG in serum and mucosae (nose, throat, lung, and rectum) that neutralized the homologous (WA-1/2020) and heterologous VOCs, including Delta, with minimal loss (<2-fold) of activity. IM vaccination also induced both spike- and nucleocapsid-specific CD4 and CD8 T cell responses in the blood. In contrast, the SL and BU vaccinations induced less spike-specific IgG in secretions and lower levels of polyfunctional IgG in serum compared with IM vaccination. After challenge with the SARS-CoV-2 Delta variant, the IM route induced robust protection, the BU route induced moderate protection, and the SL route induced no protection. Vaccine-induced neutralizing and non-neutralizing antibody effector functions positively correlated with protection, but only the effector functions correlated with early protection. Thus, IM vaccination with MVA/SdFCS-N vaccine elicited cross-reactive antibody and T cell responses, protecting against heterologous SARS-CoV-2 VOC more effectively than other routes of vaccination.


Subject(s)
COVID-19 , Hepatitis D , Vaccinia , Viral Vaccines , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Macaca mulatta , Mice , Nucleocapsid/metabolism , SARS-CoV-2 , Vaccinia virus/metabolism
7.
Nat Commun ; 13(1): 5055, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030289

ABSTRACT

Antiretroviral therapy (ART) is not curative due to the persistence of a reservoir of HIV-infected cells, particularly in tissues such as lymph nodes, with the potential to cause viral rebound after treatment cessation. In this study, fingolimod (FTY720), a lysophospholipid sphingosine-1-phosphate receptor modulator is administered to SIV-infected rhesus macaques at initiation of ART to block the egress from lymphoid tissues of natural killer and T-cells, thereby promoting proximity between cytolytic cells and infected CD4+ T-cells. When compared with the ART-only controls, FTY720 treatment during the initial weeks of ART induces a profound lymphopenia and increases frequencies of CD8+ T-cells expressing perforin in lymph nodes, but not their killing capacity; FTY720 also increases frequencies of cytolytic NK cells in lymph nodes. This increase of cytolytic cells, however, does not limit measures of viral persistence during ART, including intact proviral genomes. After ART interruption, a subset of animals that initially receives FTY720 displays a modest delay in viral rebound, with reduced plasma viremia and frequencies of infected T follicular helper cells. Further research is needed to optimize the potential utility of FTY720 when coupled with strategies that boost the antiviral function of T-cells in lymphoid tissues.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents , CD4-Positive T-Lymphocytes , Fingolimod Hydrochloride , Macaca mulatta , Viral Load
8.
Sci Immunol ; 6(61)2021 07 15.
Article in English | MEDLINE | ID: mdl-34266981

ABSTRACT

Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Saccharomycetales/genetics , Spike Glycoprotein, Coronavirus/genetics , Administration, Inhalation , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cell Line , Cytokines/immunology , Humans , Immunoglobulin G/immunology , Lung/pathology , Macaca mulatta , Male , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/immunology , Viral Load
9.
Nat Commun ; 11(1): 2534, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439858

ABSTRACT

Zika virus (ZIKV) infection has a profound impact on the fetal nervous system. The postnatal period is also a time of rapid brain growth, and it is important to understand the potential neurobehavioral consequences of ZIKV infection during infancy. Here we show that postnatal ZIKV infection in a rhesus macaque model resulted in long-term behavioral, motor, and cognitive changes, including increased emotional reactivity, decreased social contact, loss of balance, and deficits in visual recognition memory at one year of age. Structural and functional MRI showed that ZIKV-infected infant rhesus macaques had persistent enlargement of lateral ventricles, smaller volumes and altered functional connectivity between brain areas important for socioemotional behavior, cognitive, and motor function (e.g. amygdala, hippocampus, cerebellum). Neuropathological changes corresponded with neuroimaging results and were consistent with the behavioral and memory deficits. Overall, this study demonstrates that postnatal ZIKV infection in this model may have long-lasting neurodevelopmental consequences.


Subject(s)
Brain/pathology , Zika Virus Infection/pathology , Zika Virus Infection/psychology , Animals , Brain/diagnostic imaging , Brain/physiopathology , Cognition/physiology , Disease Models, Animal , Female , Macaca mulatta , Memory/physiology , Nerve Net/diagnostic imaging , Nerve Net/pathology , Nerve Net/physiopathology , Neuroimaging , Social Behavior , Zika Virus/physiology , Zika Virus Infection/diagnostic imaging , Zika Virus Infection/physiopathology
10.
bioRxiv ; 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32995780

ABSTRACT

Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV-2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.

11.
Sci Transl Med ; 10(435)2018 04 04.
Article in English | MEDLINE | ID: mdl-29618564

ABSTRACT

The Zika virus (ZIKV) epidemic is associated with fetal brain lesions and other serious birth defects classified as congenital ZIKV syndrome. Postnatal ZIKV infection in infants and children has been reported; however, data on brain anatomy, function, and behavioral outcomes following infection are absent. We show that postnatal ZIKV infection of infant rhesus macaques (RMs) results in persistent structural and functional alterations of the central nervous system compared to age-matched controls. We demonstrate ZIKV lymphoid tropism and neurotropism in infant RMs and histopathologic abnormalities in the peripheral and central nervous systems including inflammatory infiltrates, astrogliosis, and Wallerian degeneration. Structural and resting-state functional magnetic resonance imaging (MRI/rs-fMRI) show persistent enlargement of lateral ventricles, maturational changes in specific brain regions, and altered functional connectivity (FC) between brain areas involved in emotional behavior and arousal functions, including weakened amygdala-hippocampal connectivity in two of two ZIKV-infected infant RMs several months after clearance of ZIKV RNA from peripheral blood. ZIKV infection also results in distinct alterations in the species-typical emotional reactivity to acute stress, which were predicted by the weak amygdala-hippocampal FC. We demonstrate that postnatal ZIKV infection of infants in this model affects neurodevelopment, suggesting that long-term clinical monitoring of pediatric cases is warranted.


Subject(s)
Brain/pathology , Brain/virology , Zika Virus Infection/complications , Zika Virus Infection/pathology , Animals , Animals, Newborn , Brain/diagnostic imaging , Brain/physiopathology , Female , Macaca mulatta , Magnetic Resonance Imaging , Male , Pregnancy , RNA, Viral/genetics , Zika Virus Infection/diagnostic imaging , Zika Virus Infection/physiopathology
12.
Comp Med ; 65(3): 266-70, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26141451

ABSTRACT

A 3.5-y-old, female rhesus macaque (Macaca mulatta) inoculated with SIVmac239 presented 8 mo later for inappetence and facial bruising. Physical examination revealed a superficial skin abrasion below the left eye, bruising below the left brow, and epistaxis of the left nostril. There were no significant findings on CBC, serum chemistry, urinalysis, or radiographs. Differential diagnoses included infectious etiologies, self-injurious behavior, immune-mediated dermatitis, and neoplasia. Lack of response to antibiotic and analgesic therapy and observations of the macaque made it apparent that the skin lesions were self-inflicted. The excoriations rapidly progressed to extend over the nose, and the left palpebrae became edematous. Euthanasia was elected because the macaque appeared to be experiencing continued discomfort despite analgesic therapy. Histopathologic examination revealed systemic cytomegalovirus (CMV) infection involving the facial nerves, periocular nerves, meninges, and perimesenteric lymph nodes. CMV is a common infection in macaques, with adult seroprevalence close to 100% in most colonies. Infection in immunocompetent animals is usually asymptomatic but can cause significant clinical disease in immunodeficient hosts. CMV is associated with a painful peripheral neuropathy in human AIDS patients, and analgesic treatment is often unsatisfactory. Peripheral neuropathy secondary to CMV should be considered as an underlying cause of self-injurious behavior in SIV-infected macaques. Macaques affected by other diseases and disorders may also be at risk for development of painful peripheral neuropathies.


Subject(s)
Cytomegalovirus Infections/complications , Peripheral Nervous System Diseases/complications , Self-Injurious Behavior/etiology , Simian Acquired Immunodeficiency Syndrome/complications , Animals , Female , Macaca mulatta
13.
Comp Med ; 64(6): 496-500, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25527031

ABSTRACT

Two cases of clinical disease associated with extraintestinal Campylobacter infection were recently encountered in rhesus macaques (Macaca mulatta). The first case was that of a 3-y-old, male, rhesus macaque experimentally infected with SIV, who presented with abdominal pain and a midabdominal mass and was euthanized. Pathology findings included an abscess within the median liver lobe, fibrinopurulent peritonitis, and intestinal serositis with isolation of Campylobacter fetus from the blood, liver, and the hepatic abscess. The second case was that of a 1-mo-old, female, rhesus macaque who died with no apparent history of illness. Gross pathology findings included thin body condition and diarrheic staining of the perineum; histologically, acute multifocal hepatitis with intralesional bacteria was noted. Campylobacter coli was isolated from the liver and colon. Extraintestinal Campylobacter infection is uncommon in humans, usually occurring in immunocompromised subjects and most commonly manifesting as bacteremia. Extraintestinal Campylobacter infections in animals are rare but have been associated with bacteremia and cholecystitis. The macaques presented here were either immunocompromised due to SIV infection (case 1) or more vulnerable due to young age (case 2). These factors likely contributed to the extraintestinal spread of Campylobacter.


Subject(s)
Animals, Laboratory , Campylobacter Infections/veterinary , Macaca mulatta , Monkey Diseases/microbiology , Animals , Colon/microbiology , Fatal Outcome , Female , Histological Techniques/veterinary , Liver/diagnostic imaging , Liver/microbiology , Male , Perineum/microbiology , Radiography
14.
Comp Med ; 62(4): 322-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23043787

ABSTRACT

Over a 5-y period, 3 chimpanzees at our institution experienced cerebrovascular accidents (strokes). In light of the increasing population of aged captive chimpanzees and lack of literature documenting the prevalence and effectiveness of various treatments for stroke in chimpanzees, we performed a retrospective review of the medical records and necropsy reports from our institution. A survey was sent to other facilities housing chimpanzees that participate in the Chimpanzee Species Survival Plan to inquire about their experience with diagnosing and treating stroke. This case report describes the presentation, clinical signs, and diagnosis of stroke in 3 recent cases and in historical cases at our institution. Predisposing factors, diagnosis, and treatment options of cerebral vascular accident in the captive chimpanzee population are discussed also.


Subject(s)
Animals, Laboratory , Ape Diseases/pathology , Pan troglodytes , Stroke/veterinary , Animals , Female , Histological Techniques/veterinary , Magnetic Resonance Imaging/veterinary , Retrospective Studies , Stroke/pathology
15.
J Am Assoc Lab Anim Sci ; 50(3): 404-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21640039

ABSTRACT

A 3-y-old male rhesus macaque (Macaca mulatta) was noticed to be lethargic in the compound. Physical exam revealed cyanotic mucous membranes, dyspnea, bilateral harsh lung sounds, wheezing on expiration, and a firm mass possibly associated with the liver. Radiographs revealed bilateral soft tissue opacities in the thorax. Due to poor prognosis, the rhesus was euthanized, and a necropsy was performed. Both right and left lung lobes were consolidated and had multifocal white-tan masses. On cut section, the masses were firm, had areas of necrosis, hemorrhage, and often contained a tenacious exudate. Masses were identified in the liver and both kidneys. Given the morphologic features of the neoplasm, a diagnosis of squamous cell carcinoma was made. Immunohistochemistry staining for thyroid transcription factor, a nuclear transcription factor normally found in lung, thyroid, and tumors arising from either of those tissues, confirmed that the masses originated from the lung. Malignant primary lung tumors are divided into 8 main histologic subtypes: squamous cell carcinoma, small-cell carcinoma, large-cell carcinoma, adenocarcinoma, adenosquamous carcinoma, sarcomatoid carcinoma, carcinoid tumor, and salivary gland tumors. Clinical signs associated with lung tumors include, but are not limited to, dyspnea, coughing, hemoptysis, lethargy, anorexia, and weight loss. Although squamous cell carcinoma will be low on the differential list for these clinical signs, we encourage clinicians and researchers to not rule it out solely based on incidence and age of the animal.


Subject(s)
Carcinoma, Squamous Cell/veterinary , Lung Neoplasms/veterinary , Monkey Diseases/diagnosis , Animals , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology , Kidney Neoplasms/diagnosis , Kidney Neoplasms/secondary , Kidney Neoplasms/veterinary , Liver Neoplasms/diagnosis , Liver Neoplasms/secondary , Liver Neoplasms/veterinary , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Macaca mulatta , Male , Monkey Diseases/metabolism , Monkey Diseases/pathology , Nuclear Proteins/metabolism , Radiography, Thoracic , Thyroid Nuclear Factor 1 , Transcription Factors/metabolism
16.
Comp Med ; 59(4): 357-62, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19712576

ABSTRACT

A high incidence of gingival overgrowth occurred in a group of New Zealand White rabbits receiving daily cyclosporine (15 mg/kg IM) while on a retinoblastoma study. Over the course of 2 mo, rabbits presented with clinical signs of ptyalism (4 of 18 rabbits), inappetence (3 of 18), or both (3 of 18); facial dermatitis and erythema occurred secondary to ptyalism. Reducing the dose of cyclosporine to 10 mg/kg led to complete resolution of clinical signs in all but 2 rabbits, which then received azithromycin (62.5 mg PO once daily for 7 d), a common treatment for cyclosporine-induced gingival overgrowth in other species. After dose reduction and azithromycin treatment, clinical signs resolved and did not reoccur for the remainder of the study. Fourteen rabbits were necropsied at the end of the study, and gingival width was measured. Although some rabbits were clinically normal, the gingiva in all rabbits was grossly thickened. Rabbits on cyclosporine had molar gingiva that was significantly thicker (4.8 mm) than controls (2.5 mm) not treated with cyclosporine. Histologic analysis of the gingiva revealed mild to moderate gingival epithelial hyperplasia, hyperkeratosis, and mild inflammation. Gingival overgrowth is a known side effect of cyclosporine administration in other species but, to our knowledge, this report is the first description of the condition in rabbits. Because rabbits frequently are used in studies that involve systemic cyclosporine administration, clinicians are advised to include this possibility in their differential list for cases involving hypersalivation, facial dermatitis, or inappetence in rabbits.


Subject(s)
Cyclosporine/pharmacology , Gingiva/drug effects , Animals , Female , Gingiva/growth & development , Gingiva/pathology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL