Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Plant Cell ; 30(12): 2922-2942, 2018 12.
Article in English | MEDLINE | ID: mdl-30413654

ABSTRACT

Genome-wide association studies (GWAS) have identified loci linked to hundreds of traits in many different species. Yet, because linkage equilibrium implicates a broad region surrounding each identified locus, the causal genes often remain unknown. This problem is especially pronounced in nonhuman, nonmodel species, where functional annotations are sparse and there is frequently little information available for prioritizing candidate genes. We developed a computational approach, Camoco, that integrates loci identified by GWAS with functional information derived from gene coexpression networks. Using Camoco, we prioritized candidate genes from a large-scale GWAS examining the accumulation of 17 different elements in maize (Zea mays) seeds. Strikingly, we observed a strong dependence in the performance of our approach based on the type of coexpression network used: expression variation across genetically diverse individuals in a relevant tissue context (in our case, roots that are the primary elemental uptake and delivery system) outperformed other alternative networks. Two candidate genes identified by our approach were validated using mutants. Our study demonstrates that coexpression networks provide a powerful basis for prioritizing candidate causal genes from GWAS loci but suggests that the success of such strategies can highly depend on the gene expression data context. Both the software and the lessons on integrating GWAS data with coexpression networks generalize to species beyond maize.


Subject(s)
Genome-Wide Association Study/methods , Zea mays/genetics , Linkage Disequilibrium/genetics , Software
2.
Plant Direct ; 4(5): e00220, 2020 May.
Article in English | MEDLINE | ID: mdl-32426691

ABSTRACT

Genome-wide association studies (GWAS) have proven to be a valuable approach for identifying genetic intervals associated with phenotypic variation in Medicago truncatula. These intervals can vary in size, depending on the historical local recombination. Typically, significant intervals span numerous gene models, limiting the ability to resolve high-confidence candidate genes underlying the trait of interest. Additional genomic data, including gene co-expression networks, can be combined with the genetic mapping information to successfully identify candidate genes. Co-expression network analysis provides information about the functional relationships of each gene through its similarity of expression patterns to other well-defined clusters of genes. In this study, we integrated data from GWAS and co-expression networks to pinpoint candidate genes that may be associated with nodule-related phenotypes in M. truncatula. We further investigated a subset of these genes and confirmed that several had existing evidence linking them nodulation, including MEDTR2G101090 (PEN3-like), a previously validated gene associated with nodule number.

SELECTION OF CITATIONS
SEARCH DETAIL