Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 191, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305904

ABSTRACT

Bacterial degradation of natural rubber (NR) in an oxic environment is initiated by oxidative cleavage of double bonds in the NR-carbon backbone and is catalyzed by extracellular haem-containing rubber oxygenases. NR-cleavage products of sufficiently low molecular mass are taken up by the cells and metabolized for energy and biomass formation. Gram-negative and Gram-positive NR-degrading bacteria (usually) employ different types of rubber oxygenases such as RoxA and/or RoxB (most Gram-negative NR-degraders) or latex clearing protein Lcp (most Gram-positive NR-degraders). In order to find novel orthologues of Rox proteins, we have revisited databases and provide an update of Rox-like proteins. We describe the putative evolution of rubber oxygenases and confirm the presence of a third subgroup of Rox-related proteins (RoxCs), the biological function of which remains, however, unclear. We summarize the knowledge on the taxonomic position of Steroidobacter cummioxidans 35Y and related species. Comparison of genomic and biochemical features of strain 35Y with other species of the genus Steroidobacter suggests that strain 35Y represents a species of a novel genus for which the designation Aurantibaculum gen. nov. is proposed. A short summary on the capabilities of NR-degrading consortia, that could be superior in biotechnological applications compared to pure cultures, is also provided. KEY POINTS: • Three types of rubber oxygenases exist predominantly in Gram-negative microbes • S. cummioxidans 35Y contains RoxA and RoxB which are superior in activity • S. cummioxidans 35Y represents a species of a novel genus.


Subject(s)
Oxygenases , Rubber , Rubber/metabolism , Oxygenases/metabolism , Bacterial Proteins/metabolism , Latex/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism
2.
Appl Environ Microbiol ; 86(8)2020 04 01.
Article in English | MEDLINE | ID: mdl-32060025

ABSTRACT

Acidocalcisomes are membrane-enclosed, polyphosphate-containing acidic organelles in lower Eukaryota but have also been described for Agrobacterium tumefaciens (M. Seufferheld, M. Vieira, A. Ruiz, C. O. Rodrigues, S. Moreno, and R. Docampo, J Biol Chem 278:29971-29978, 2003, https://doi.org/10.1074/jbc.M304548200). This study aimed at the characterization of polyphosphate-containing acidocalcisomes in this alphaproteobacterium. Unexpectedly, fluorescence microscopic investigation of A. tumefaciens cells using fluorescent dyes and localization of constructed fusions of polyphosphate kinases (PPKs) and of vacuolar H+-translocating pyrophosphatase (HppA) with enhanced yellow fluorescent protein (eYFP) suggested that acidocalcisomes and polyphosphate are different subcellular structures. Acidocalcisomes and polyphosphate granules were frequently located close together, near the cell poles. However, they never shared the same position. Mutant strains of A. tumefaciens with deletions of both ppk genes (Δppk1 Δppk2) were unable to form polyphosphate but still showed cell pole-located eYFP-HppA foci and could be stained with MitoTracker. In conclusion, A. tumefaciens forms polyP granules that are free of a surrounding membrane and thus resemble polyP granules of Ralstonia eutropha and other bacteria. The composition, contents, and function of the subcellular structures that are stainable with MitoTracker and harbor eYFP-HppA remain unclear.IMPORTANCE The uptake of alphaproteobacterium-like cells by ancestors of eukaryotic cells and subsequent conversion of these alphaproteobacterium-like cells to mitochondria are thought to be key steps in the evolution of the first eukaryotic cells. The identification of acidocalcisomes in two alphaproteobacterial species some years ago and the presence of homologs of the vacuolar proton-translocating pyrophosphatase HppA, a marker protein of the acidocalcisome membrane in eukaryotes, in virtually all species within the alphaproteobacteria suggest that eukaryotic acidocalcisomes might also originate from related structures in ancestors of alphaproteobacterial species. Accordingly, alphaproteobacterial acidocalcisomes and eukaryotic acidocalcisomes should have similar features. Since hardly any information is available on bacterial acidocalcisomes, this study aimed at the characterization of organelle-like structures in alphaproteobacterial cells, with A. tumefaciens as an example.


Subject(s)
Agrobacterium tumefaciens/physiology , Organelles/metabolism , Polyphosphates/metabolism , Microscopy, Fluorescence
3.
Appl Microbiol Biotechnol ; 104(22): 9683-9692, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33025129

ABSTRACT

Agrobacterium tumefaciens synthesizes polyphosphate (polyP) in the form of one or two polyP granules per cell during growth. The A. tumefaciens genome codes for two polyphosphate kinase genes, ppk1AT and ppk2AT, of which only ppk1AT is essential for polyP granule formation in vivo. Biochemical characterization of the purified PPK1AT and PPK2AT proteins revealed a higher substrate specificity of PPK1AT (in particular for adenine nucleotides) than for PPK2AT. In contrast, PPK2AT accepted all nucleotides at comparable rates. Most interestingly, PPK2AT catalyzed also the formation of tetra-, penta-, hexa-, hepta-, and octa-phosphorylated nucleosides from guanine, cytosine, desoxy-thymidine, and uridine nucleotides and even nona-phosphorylated adenosine. Our data-in combination with in vivo results-suggest that PPK1AT is important for the formation of polyP whereas PPK2AT has the function to replenish nucleoside triphosphate pools during times of enhanced demand. The potential physiological function(s) of the detected oligophosphorylated nucleotides await clarification. KEY POINTS: •PPK1AT and PPK2AT have different substrate specificities, •PPK2AT is a subgroup 1 member of PPK2s, •PPK2AT catalyzes the formation of polyphosphorylated nucleosides.


Subject(s)
Agrobacterium tumefaciens , Nucleosides , Adenine Nucleotides , Agrobacterium tumefaciens/genetics , Nucleotides , Polyphosphates
4.
Appl Microbiol Biotechnol ; 104(15): 6659-6667, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32500270

ABSTRACT

Polyphosphosphate kinases (PPKs) catalyse the reversible transfer of the γ-phosphate group of a nucleoside-triphosphate to a growing chain of polyphosphate. Most known PPKs are specific for ATP, but some can also use GTP as a phosphate donor. In this study, we describe the properties of a PPK2-type PPK of the ß-proteobacterium Ralstonia eutropha. The purified enzyme (PPK2c) is highly unspecific and accepts purine nucleotides as well as the pyridine nucleotides including UTP as substrates. The presence of a polyP primer is not necessary for activity. The corresponding nucleoside diphosphates and microscopically detectable polyphosphate granules were identified as reaction products. PPK2c also catalyses the formation of ATP, GTP, CTP, dTTP and UTP from the corresponding nucleoside diphosphates, if polyP is present as a phosphate donor. Remarkably, the nucleoside-tetraphosphates AT(4)P, GT(4)P, CT(4)P, dTT(4)P and UT(4)P were also detected in substantial amounts. The low nucleotide specificity of PPK2c predestines this enzyme in combination with polyP to become a powerful tool for the regeneration of ATP and other nucleotides in biotechnological applications. As an example, PPK2c and polyP were used to replace ATP and to fuel the hexokinase-catalysed phosphorylation of glucose with only catalytic amounts of ADP. KEY POINTS: • PPK2c of R. eutropha can be used for regeneration of any NTP or dNTP. • PPK2c is highly unspecific and accepts all purine and pyrimidine nucleotides. • PPK2c forms polyphosphate granules in vitro from any NTP.


Subject(s)
Cupriavidus necator/enzymology , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Purine Nucleotides/metabolism , Pyrimidine Nucleotides/metabolism , Uridine Diphosphate/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Cupriavidus necator/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphorylation , Phosphotransferases (Phosphate Group Acceptor)/genetics
5.
Biomacromolecules ; 20(9): 3253-3260, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31062966

ABSTRACT

A considerable variety of different biopolymers is formed by the entirety of organisms present on earth. Most of these compounds are organic polymers such as polysaccharides, polyamino acids, polynucleotides, polyisoprenes or polyhydroxyalkanoates (PHAs), but some biopolymers can consist of solely inorganic monomers such as phosphate in polyphosphates (polyPs). In this contribution, we describe the formation of an organic-inorganic block copolymer consisting of poly(3-hydroxybutyrate) (PHB) and polyP. This was achieved by the expression of a fusion of the polyP kinase gene (ppk2c) with the PHB synthase gene (phaC) of Ralstonia eutropha in a polyP-free and PHB-free mutant background of R. eutropha. The fusion protein catalyzed both the formation of polyP by its polyP kinase domain and the formation of PHB by its PHB synthase domain. It was also possible to synthesize the polyP-PHB polymer in vitro with purified Ppk2c-PhaC, if the monomers, adenosine triphosphate (ATP) and 3-hydroxybutyryl-CoA (3HB-CoA), were provided. Most likely, the formed block copolymer (polyP-protein-PHB) turns into a blend of polyP and PHB after release from the enzyme.


Subject(s)
Biopolymers/chemistry , Polyesters/chemistry , Polyhydroxyalkanoates/chemistry , Polyphosphates/chemistry , Acyltransferases/chemistry , Acyltransferases/genetics , Bacterial Proteins/chemistry , Biopolymers/biosynthesis , Cupriavidus necator/chemistry , Cupriavidus necator/genetics , Polyhydroxyalkanoates/biosynthesis , Polyphosphates/metabolism
6.
Appl Microbiol Biotechnol ; 103(19): 8229-8239, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31485689

ABSTRACT

The utilization of rubber (poly (cis-1,4-isoprene)) by rubber-degrading bacteria depends on the synthesis of rubber oxygenases that cleave the polymer extracellularly to low molecular weight products that can be taken up and used as a carbon source. All so far described Gram-negative rubber-degrading species use two related ≈ 70 kDa rubber oxygenases (RoxA and RoxB) for the primary attack of rubber while all described Gram-positive rubber-degrading strains use RoxA/RoxB-unrelated latex-clearing proteins (Lcps, ≈ 40 kDa) as rubber oxygenase(s). In this study, we identified an lcp orthologue in a Gram-negative species (Solimonas fluminis). We cloned and heterologously expressed the lcp gene of S. fluminis HR-BB, purified the corresponding Lcp protein (LcpHR-BB) from recombinant Escherichia coli, and biochemically characterised the LcpHR-BB activity. LcpHR-BB cleaved polyisoprene to a mixture of C20 and higher oligoisoprenoids at a specific activity of 1.5 U/mg. Furthermore, spectroscopic investigation identified LcpHR-BB as a b-haem-containing protein with an oxidised, fivefold coordinated (open) haem centre. To the best of our knowledge, this is the first report that Gram-negative bacteria can have an active rubber oxygenase of the Lcp type.


Subject(s)
Bacterial Proteins/metabolism , Gammaproteobacteria/enzymology , Latex/metabolism , Oxygenases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Biotransformation , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gammaproteobacteria/genetics , Gene Expression , Oxygenases/genetics , Oxygenases/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
7.
Appl Microbiol Biotechnol ; 103(1): 125-142, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30377752

ABSTRACT

Natural rubber (NR), poly(cis-1,4-isoprene), is used in an industrial scale for more than 100 years. Most of the NR-derived materials are released to the environment as waste or by abrasion of small particles from our tires. Furthermore, compounds with isoprene units in their molecular structures are part of many biomolecules such as terpenoids and carotenoids. Therefore, it is not surprising that NR-degrading bacteria are widespread in nature. NR has one carbon-carbon double bond per isoprene unit and this functional group is the primary target of NR-cleaving enzymes, so-called rubber oxygenases. Rubber oxygenases are secreted by rubber-degrading bacteria to initiate the break-down of the polymer and to use the generated cleavage products as a carbon source. Three main types of rubber oxygenases have been described so far. One is rubber oxygenase RoxA that was first isolated from Xanthomonas sp. 35Y but was later also identified in other Gram-negative rubber-degrading species. The second type of rubber oxygenase is the latex clearing protein (Lcp) that has been regularly found in Gram-positive rubber degraders. Recently, a third type of rubber oxygenase (RoxB) with distant relationship to RoxAs was identified in Gram-negative bacteria. All rubber oxygenases described so far are haem-containing enzymes and oxidatively cleave polyisoprene to low molecular weight oligoisoprenoids with terminal CHO and CO-CH3 functions between a variable number of intact isoprene units, depending on the type of rubber oxygenase. This contribution summarises the properties of RoxAs, RoxBs and Lcps.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Oxygenases/metabolism , Rubber/metabolism , Bacterial Proteins/genetics , Biotechnology/methods , Electron Spin Resonance Spectroscopy , Heme/chemistry , Hemiterpenes/metabolism , Latex/metabolism , Oxygenases/chemistry , Oxygenases/genetics , Phylogeny , Spectrophotometry, Ultraviolet , Xanthomonas/metabolism
8.
Appl Environ Microbiol ; 84(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29678915

ABSTRACT

In this study, we screened poly(3-hydroxybutyrate) (PHB) synthase PhaC1 and PHB depolymerase PhaZa1 of Ralstonia eutropha for the presence of phosphorylated residues during the PHB accumulation and PHB degradation phases. Thr373 of PHB synthase PhaC1 was phosphorylated during the stationary growth phase but was not modified during the exponential and PHB accumulation phases. Ser35 of PHB depolymerase PhaZa1 was identified in the phosphorylated form during both the exponential and stationary growth phases. Additional phosphosites were identified for both proteins in sample-dependent forms. Site-directed mutagenesis of the codon for Thr373 and other phosphosites of PhaC1 revealed a strong negative impact on PHB synthase activity. Modifications of Thr26 and Ser35 of PhaZa1 reduced the ability of R. eutropha to mobilize PHB in the stationary growth phase. Our results show that phosphorylation of PhaC1 and PhaZa1 can be important for the modulation of the activities of PHB synthase and PHB depolymerase.IMPORTANCE Poly(3-hydroxybutyrate) (PHB) and related polyhydroxyalkanoates (PHAs) are important intracellular carbon and energy storage compounds in many prokaryotes. The accumulation of PHB or PHAs increases the fitness of cells during periods of starvation and under other stress conditions. The simultaneous presence of PHB synthase (PhaC1) and PHB depolymerase (PhaZa1) on synthesized PHB granules in Ralstonia eutropha (alternative designation, Cupriavidus necator) was previously shown in several laboratories. These findings imply that the activities of PHB synthase and PHB depolymerase should be regulated to avoid a futile cycle of simultaneous synthesis and degradation of PHB. Here, we addressed this question by identifying the phosphorylation sites on PhaC1 and PhaZa1 and by site-directed mutagenesis of the identified residues. Furthermore, we conducted in vitro and in vivo analyses of PHB synthase activity and PHB contents.


Subject(s)
Acyltransferases/metabolism , Carboxylic Ester Hydrolases/metabolism , Cupriavidus necator/enzymology , Hydroxybutyrates/metabolism , Polyesters/metabolism , Acyltransferases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Cupriavidus necator/genetics , Cupriavidus necator/growth & development , Cupriavidus necator/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Mutagenesis, Site-Directed , Phosphorylation , Polyhydroxyalkanoates/metabolism , Recombinant Proteins
9.
Appl Microbiol Biotechnol ; 102(23): 10245-10257, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30215127

ABSTRACT

Biodegradation of poly(cis-1,4-isoprene) (rubber) by Gram-negative bacteria has been investigated on the enzymatic level only in Steroidobacter cummioxidans 35Y (previously Xanthomonas sp. 35Y). This species produces two kinds of rubber oxygenases, RoxA35Y and RoxB35Y, one of which (RoxB35Y) cleaves polyisoprene to a mixture of C20- and higher oligoisoprenoids while the other (RoxA35Y) cleaves polyisoprene and RoxB35Y-derived oligoisoprenoids to the C15-oligoisoprenoid 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). ODTD can be taken up by S. cummioxidans and used as a carbon source. Gram-positive rubber-degrading bacteria employ another type of rubber oxygenase, latex clearing protein (Lcp), for the initial oxidative attack of the polyisoprene molecule. In this contribution, we examined which type of rubber oxygenase is present in the only other well-documented Gram-negative rubber-degrading species, Rhizobacter gummiphilus NS21. No homologue for an Lcp protein but homologues for a putative RoxA and a RoxB protein (the latter identical to a previously postulated LatA-denominated rubber cleaving enzyme) were identified in the genome of strain NS21. The roxANS21 and roxBNS21 genes were separately expressed in a ∆roxA35Y/∆roxB35Y background of S. cummioxidans 35Y and restored the ability of the mutant to produce oligoisoprenoids. The RoxANS21 and RoxBNS21 proteins were each purified and biochemically characterised. The results-in combination with in silico analysis of databases-indicate that Gram-negative rubber-degrading bacteria generally utilise two synergistically acting rubber oxygenases (RoxA/RoxB) for efficient cleavage of polyisoprene to ODTD.


Subject(s)
Bacterial Proteins/genetics , Burkholderiales/enzymology , Burkholderiales/genetics , Oxygenases/genetics , Rubber/metabolism , Bacterial Proteins/metabolism , Biodegradation, Environmental , Cloning, Molecular , DNA, Bacterial/genetics , Genome, Bacterial , Oxygenases/metabolism
10.
Appl Microbiol Biotechnol ; 102(6): 2693-2707, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29435618

ABSTRACT

A novel poly-3-hydroxybutyrate depolymerase was identified in Azotobacter vinelandii. This enzyme, now designated PhbZ1, is associated to the poly-3-hydroxybutyrate (PHB) granules and when expressed in Escherichia coli, it showed in vitro PHB depolymerizing activity on native or artificial PHB granules, but not on crystalline PHB. Native PHB (nPHB) granules isolated from a PhbZ1 mutant had a diminished endogenous in vitro hydrolysis of the polyester, when compared to the granules of the wild-type strain. This in vitro degradation was also tested in the presence of free coenzyme A. Thiolytic degradation of the polymer was observed in the nPHB granules of the wild type, resulting in the formation of 3-hydroxybutyryl-CoA, but was absent in the granules of the mutant. It was previously reported that cultures of A. vinelandii OP grown in a bioreactor showed a decrease in the weight average molecular weight (Mw) of the PHB after 20 h of culture, with an increase in the fraction of polymers of lower molecular weight. This decrease was correlated with an increase in the PHB depolymerase activity during the culture. Here, we show that in the phbZ1 mutant, neither the decrease in the Mw nor the appearance of a low molecular weight polymers occurred. In addition, a higher PHB accumulation was observed in the cultures of the phbZ1 mutant. These results suggest that PhbZ1 has a role in the degradation of PHB in cultures in bioreactors and its inactivation allows the production of a polymer of a uniform high molecular weight.


Subject(s)
Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism , Carboxylic Ester Hydrolases/deficiency , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Polyesters/chemistry , Polyesters/metabolism , Bioreactors/microbiology , Carboxylic Ester Hydrolases/metabolism , Gene Deletion , Molecular Weight
11.
Proteins ; 85(7): 1351-1361, 2017 07.
Article in English | MEDLINE | ID: mdl-28370478

ABSTRACT

An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3-hydroxybutyrate) depolymerase were identified in two high-resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281-295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3-hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281-295 in comparison to the apo (substrate-free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281-295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351-1361. © 2017 Wiley Periodicals, Inc.


Subject(s)
Bacterial Proteins/chemistry , Burkholderiaceae/chemistry , Carboxylic Ester Hydrolases/chemistry , Hydroxybutyrates/chemistry , Molecular Dynamics Simulation , Polyesters/chemistry , Amino Acid Motifs , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Burkholderiaceae/enzymology , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Hydroxybutyrates/metabolism , Kinetics , Molecular Docking Simulation , Mutation , Polyesters/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics
12.
Appl Environ Microbiol ; 83(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28389545

ABSTRACT

The formation and localization of polyhydroxybutyrate (PHB) granules in Ralstonia eutropha are controlled by PhaM, which interacts both with the PHB synthase (PhaC) and with the bacterial nucleoid. Here, we studied the importance of proline and lysine residues of two C-terminal PAKKA motifs in PhaM for their importance in attaching PHB granules to DNA by in vitro and in vivo methods. Substitution of the lysine residues but not of the proline residues resulted in detachment of formed PHB granules from the nucleoid. Instead, formation of PHB granule clusters at polar regions of the rod-shaped cells and an unequal distribution of PHB granules to daughter cells were observed. The formation of PHB granules was studied by the expression of chromosomally anchored gene fusions of fluorescent proteins with PhaM and PhaC in different backgrounds. PhaM and PhaC fusions showed a distinct colocalization at formed PHB granules in the nucleoid region of the wild type. In a ΔphaC background, PhaM and the catalytically inactive PhaCC319A protein were not able to form fluorescent foci, indicating that correct positioning requires the formation of PHB. Furthermore, time-lapse experiments revealed that PhaC and PhaM proteins detach from formed PHB granules at later stages, resulting in a nonhomogeneous population of PHB granules. This could explain why growth of individual PHB granules stops under PHB-permissive conditions at a certain size.IMPORTANCE PHB granules are storage compounds for carbon and energy in many prokaryotes. Equal distribution of accumulated PHB granules during cell division is therefore important for optimal fitness of the daughter cells. In R. eutropha, PhaM is responsible for maximal activity of PHB synthase, for initiation of PHB granule formation at discrete regions in the cells, and for association of formed PHB granules with the nucleoid. Here we found that four lysine residues of C-terminal PhaM sequence motifs are essential for association of PHB granules with the nucleoid. Furthermore, we followed PHB granule formation by time-lapse microscopy and provide evidence for aging of PHB granules that is manifested by detachment of previously PHB granule-associated PhaM and PHB synthase.


Subject(s)
Bacterial Proteins/metabolism , Cupriavidus necator/metabolism , Cytoplasmic Granules/metabolism , Hydroxybutyrates/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cupriavidus necator/chemistry , Cupriavidus necator/enzymology , Cupriavidus necator/genetics , Cytoplasmic Granules/chemistry , Hydroxybutyrates/chemistry , Protein Binding , Protein Domains
13.
Appl Environ Microbiol ; 83(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28130300

ABSTRACT

On the basis of bioinformatic evidence, we suspected that proteins with a CYTH (CyaB thiamine triphosphatase) domain and/or a CHAD (conserved histidine α-helical domain) motif might represent polyphosphate (polyP) granule-associated proteins. We found no evidence of polyP targeting by proteins with CYTH domains. In contrast, two CHAD motif-containing proteins from Ralstonia eutropha H16 (A0104 and B1017) that were expressed as fusions with enhanced yellow fluorescent protein (eYFP) colocalized with polyP granules. While the expression of B1017 was not detectable, the A0104 protein was specifically identified in an isolated polyP granule fraction by proteome analysis. Moreover, eYFP fusions with the CHAD motif-containing proteins MGMSRV2-1987 from Magnetospirillum gryphiswaldense and PP2307 from Pseudomonas putida also colocalized with polyP granules in a transspecies-specific manner. These data indicated that CHAD-containing proteins are generally attached to polyP granules. Together with the findings from four previously polyP-attached proteins (polyP kinases), the results of this study raised the number of polyP-associated proteins in R. eutropha to six. We suggest designating polyP granule-bound proteins with CHAD motifs as phosins (phosphate), analogous to phasins and oleosins that are specifically bound to the surface of polyhydroxyalkanoate (PHA) granules in PHA-accumulating bacteria and to oil droplets in oil seed plants, respectively.IMPORTANCE The importance of polyphosphate (polyP) for life is evident from the ubiquitous presence of polyP in all species on earth. In unicellular eukaryotic microorganisms, polyP is located in specific membrane-enclosed organelles, called acidocalcisomes. However, in most prokaryotes, polyP is present as insoluble granules that have been designated previously as volutin granules. Almost nothing is known regarding the macromolecular composition of polyP granules. Particularly, the absence or presence of cellular compounds on the surface of polyP granules has not yet been investigated. In this study, we identified a novel class of proteins that are attached to the surface of polyP granules in three model species of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria These proteins are characterized by the presence of a CHAD (conserved histidine α-helical domain) motif that functions as a polyP granule-targeting signal. We suggest designating CHAD motif-containing proteins as phosins [analogous to phasins for poly(3-hydroxybutyrate)-associated proteins and to oleosins for oil droplet-associated proteins in oil seed plants]. The expression of phosins in different species confirmed their polyP-targeting function in a transspecies-specific manner. We postulate that polyP granules in prokaryotic species generally have a complex surface structure that consists of one to several polyP kinases and phosin proteins. We suggest differentiating polyP granules from acidocalcisomes by designating them as polyphosphatosomes.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Gram-Negative Aerobic Bacteria/metabolism , Histidine/chemistry , Polyphosphates/chemistry , Bacterial Proteins/genetics , Biopolymers , Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Histidine/metabolism , Luminescent Proteins/genetics , Magnetospirillum/metabolism , Polyphosphates/metabolism , Protein Conformation, alpha-Helical , Proteome , Pseudomonas putida/metabolism
14.
Appl Environ Microbiol ; 83(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28500046

ABSTRACT

Only two types of rubber oxygenases, rubber oxygenase (RoxA) and latex clearing protein (Lcp), have been described so far. RoxA proteins (RoxAs) are c-type cytochromes of ≈70 kDa produced by Gram-negative rubber-degrading bacteria, and they cleave polyisoprene into 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD), a C15 oligo-isoprenoid, as the major end product. Lcps are common among Gram-positive rubber degraders and do not share amino acid sequence similarities with RoxAs. Furthermore, Lcps have much smaller molecular masses (≈40 kDa), are b-type cytochromes, and cleave polyisoprene to a mixture of C20, C25, C30, and higher oligo-isoprenoids as end products. In this article, we purified a new type of rubber oxygenase, RoxB Xsp (RoxB of Xanthomonas sp. strain 35Y). RoxB Xsp is distantly related to RoxAs and resembles RoxAs with respect to molecular mass (70.3 kDa for mature protein) and cofactor content (2 c-type hemes). However, RoxB Xsp differs from all currently known RoxAs in having a distinctive product spectrum of C20, C25, C30, and higher oligo-isoprenoids that has been observed only for Lcps so far. Purified RoxB Xsp revealed the highest specific activity of 4.5 U/mg (at 23°C) of all currently known rubber oxygenases and exerts a synergistic effect on the efficiency of polyisoprene cleavage by RoxA Xsp RoxB homologs were identified in several other Gram-negative rubber-degrading species, pointing to a prominent function of RoxB for the biodegradation of rubber in Gram-negative bacteria.IMPORTANCE The enzymatic cleavage of rubber (polyisoprene) is of high environmental importance given that enormous amounts of rubber waste materials are permanently released (e.g., by abrasion of tires). Research from the last decade has discovered rubber oxygenase A, RoxA, and latex clearing protein (Lcp) as being responsible for the primary enzymatic attack on the hydrophobic and water-insoluble biopolymer poly(cis-1,4-isoprene) in Gram-negative and Gram-positive rubber-degrading bacteria, respectively. Here, we provide evidence that a third type of rubber oxygenase is present in Gram-negative rubber-degrading species. Due to its characteristics, we suggest the designation RoxB for the new type of rubber oxygenase. Bioinformatic analysis of genome sequences indicates the presence of roxB homologs in other Gram-negative rubber degraders.


Subject(s)
Bacterial Proteins/metabolism , Latex/metabolism , Oxygenases/metabolism , Rubber/metabolism , Xanthomonas/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biodegradation, Environmental , Butadienes/metabolism , Hemiterpenes/metabolism , Kinetics , Oxygenases/chemistry , Oxygenases/genetics , Pentanes/metabolism , Xanthomonas/chemistry , Xanthomonas/genetics , Xanthomonas/metabolism
15.
Appl Environ Microbiol ; 83(13)2017 07 01.
Article in English | MEDLINE | ID: mdl-28455332

ABSTRACT

In this study, we constructed a set of Ralstonia eutropha H16 strains with single, double, or triple deletions of the (p)ppGpp synthase/hydrolase (spoT1), (p)ppGpp synthase (spoT2), and/or polyhydroxybutyrate (PHB) depolymerase (phaZa1 or phaZa3) gene, and we determined the impact on the levels of (p)ppGpp and on accumulated PHB. Mutants with deletions of both the spoT1 and spoT2 genes were unable to synthesize detectable amounts of (p)ppGpp and accumulated only minor amounts of PHB, due to PhaZa1-mediated depolymerization of PHB. In contrast, unusually high levels of PHB were found in strains in which the (p)ppGpp concentration was increased by the overexpression of (p)ppGpp synthase (SpoT2) and the absence of (p)ppGpp hydrolase. Determination of (p)ppGpp levels in wild-type R. eutropha under different growth conditions and induction of the stringent response by amino acid analogs showed that the concentrations of (p)ppGpp during the growth phase determine the amount of PHB remaining in later growth phases by influencing the efficiency of the PHB mobilization system in stationary growth. The data reported for a previously constructed ΔspoT2 strain (C. J. Brigham, D. R. Speth, C. Rha, and A. J. Sinskey, Appl Environ Microbiol 78:8033-8044, 2012, https://doi.org/10.1128/AEM.01693-12) were identified as due to an experimental error in strain construction, and our results are in contrast to the previous indication that the spoT2 gene product is essential for PHB accumulation in R. eutrophaIMPORTANCE Polyhydroxybutyrate (PHB) is an important intracellular carbon and energy storage compound in many prokaryotes and helps cells survive periods of starvation and other stress conditions. Research activities in several laboratories over the past 3 decades have shown that both PHB synthase and PHB depolymerase are constitutively expressed in most PHB-accumulating bacteria, such as Ralstonia eutropha This implies that PHB synthase and depolymerase activities must be well regulated in order to avoid a futile cycle of simultaneous PHB synthesis and PHB degradation (mobilization). Previous reports suggested that the stringent response in Rhizobium etli and R. eutropha is involved in the regulation of PHB metabolism. However, the levels of (p)ppGpp and the influence of those levels on PHB accumulation and PHB mobilization have not yet been determined for any PHB-accumulating species. In this study, we optimized a (p)ppGpp extraction procedure and a high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based detection method for the quantification of (p)ppGpp in R. eutropha This enabled us to study the relationship between the concentrations of (p)ppGpp and the accumulated levels of PHB in the wild type and in several constructed mutant strains. We show that overproduction of the alarmone (p)ppGpp correlated with reduced growth and massive overproduction of PHB. In contrast, in the absence of (p)ppGpp, mobilization of PHB was dramatically enhanced.


Subject(s)
Cupriavidus necator/metabolism , Guanosine Triphosphate/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cupriavidus necator/enzymology , Cupriavidus necator/genetics
16.
Appl Environ Microbiol ; 82(22): 6593-6602, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27590810

ABSTRACT

Gram-positive rubber degraders such as Streptomyces sp. strain K30 cleave rubber [poly(cis-1,4-isoprene)] to low-molecular-mass oligoisoprenoid products with terminal keto and aldehyde groups by the secretion of a latex clearing protein (Lcp) designated rubber oxygenase. LcpK30 is a heme b cytochrome and has a domain of unknown function (DUF2236) that is characteristic of orthologous Lcps. Proteins with a DUF2236 domain are characterized by three highly conserved residues (R164, T168, and H198 in LcpK30). Exchange of R164 or T168 by alanine and characterization of the purified LcpK30 muteins revealed that both were stable and contained a heme group (red color) but were inactive. This finding identifies both residues as key residues for the cleavage reaction. The purified H198A mutein was also inactive and stable but was colorless due to the absence of heme. We constructed and characterized alanine muteins of four additional histidine residues moderately conserved in 495 LcpK30 homologous sequences (H203A, H232A, H259A, H266A). All muteins revealed wild-type properties, excluding any importance for activity and/or heme coordination. Since LcpK30 has only eight histidines and the three remaining residues (H103, H184, and H296) were not conserved (<11%), H198 presumably is the only essential histidine, indicating its putative function as a heme ligand. The second axial position of the heme is likely occupied by a not yet identified molecule. Mutational analysis of three strictly conserved arginine residues (R195, R202, R328) showed that R195A and R202A muteins were colorless and instable, suggesting that these residues are important for the protein stability. IMPORTANCE: Large amounts of rubber waste materials have been permanently released into the environment for more than a century, yet accumulation of rubber particles released, e.g., by abrasion of tires along highways has not been observed. This is indicative of the ubiquitous presence and activity of rubber-degrading microorganisms. Despite increasing research activities on rubber biodegradation during the last 2 decades, the knowledge of the enzymatic cleavage mechanism of rubber by latex clearing protein (Lcp) still is limited. In particular, the catalytic cleavage mechanism and the amino acids of Lcp proteins (Lcps) that are involved have not yet been identified for any Lcp. In this study, we investigated the importance of 10 amino acid residues of Lcp from Streptomyces sp. K30 (LcpK30) by mutagenesis, mutein purification, and biochemical characterization. We identified several essential residues, one of which most likely represents an axial heme ligand in Lcp of Streptomyces sp. K30.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Latex/metabolism , Streptomyces/metabolism , Alanine , Bacterial Proteins/genetics , Biodegradation, Environmental , Cloning, Molecular , Heme/metabolism , Histidine , Oxygenases/genetics , Oxygenases/metabolism , Protein Stability , Streptomyces/genetics
17.
BMC Microbiol ; 16: 92, 2016 May 23.
Article in English | MEDLINE | ID: mdl-27215318

ABSTRACT

BACKGROUND: Biodegradation of rubber (polyisoprene) is initiated by oxidative cleavage of the polyisoprene backbone and is performed either by an extracellular rubber oxygenase (RoxA) from Gram-negative rubber degrading bacteria or by a latex clearing protein (Lcp) secreted by Gram-positive rubber degrading bacteria. Only little is known on the biochemistry of polyisoprene cleavage by Lcp and on the types and functions of the involved cofactors. RESULTS: A rubber-degrading bacterium was isolated from the effluent of a rubber-processing factory and was taxonomically identified as a Rhodococcus rhodochrous species. A gene of R. rhodochrous RPK1 that coded for a polyisoprene-cleaving latex clearing protein (lcp Rr ) was identified, cloned, expressed in Escherichia coli and purified. Purified LcpRr had a specific activity of 3.1 U/mg at 30 °C and degraded poly(1,4-cis-isoprene) to a mixture of oligoisoprene molecules with terminal keto and aldehyde groups. The pH optimum of LcpRr was higher (pH 8) than for other rubber-cleaving enzymes (≈ pH 7). UVvis spectroscopic analysis of LcpRr revealed a cytochrome-specific absorption spectrum with an additional feature at long wavelengths that has not been observed for any other rubber-cleaving enzyme. The presence of one b-type haem in LcpRr as a co-factor was confirmed by (i) metal analysis, (ii) solvent extraction, (iii) bipyridyl assay and (iv) detection of haem-b specific m/z values via mass-spectrometry. CONCLUSIONS: Our data point to substantial differences in the active sites of Lcp proteins obtained from different rubber degrading bacteria.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Rhodococcus/growth & development , Rhodococcus/metabolism , Bacterial Proteins/chemistry , Biodegradation, Environmental , Catalytic Domain , Cloning, Molecular , Industrial Microbiology , Industrial Waste , Mass Spectrometry , Rhodococcus/classification , Rhodococcus/isolation & purification , Rubber/metabolism
18.
Proc Natl Acad Sci U S A ; 110(34): 13833-8, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23922395

ABSTRACT

Rubber oxygenase A (RoxA) is one of only two known enzymes able to catalyze the oxidative cleavage of latex for biodegradation. RoxA acts as a processive dioxygenase to yield the predominant product 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD), a tri-isoprene unit. Here we present a structural analysis of RoxA from Xanthomonas sp. strain 35Y at a resolution of 1.8 Å. The enzyme is a 75-kDa diheme c-type cytochrome with an unusually low degree of secondary structure. Analysis of the heme group arrangement and peptide chain topology of RoxA confirmed a distant kinship with diheme peroxidases of the CcpA family, but the proteins are functionally distinct, and the extracellular RoxA has evolved to have twice the molecular mass by successively accumulating extensions of peripheral loops. RoxA incorporates both oxygen atoms of its cosubstrate dioxygen into the rubber cleavage product ODTD, and we show that RoxA is isolated with O2 stably bound to the active site heme iron. Activation and cleavage of O2 require binding of polyisoprene, and thus the substrate needs to use hydrophobic access channels to reach the deeply buried active site of RoxA. The location and nature of these channels support a processive mechanism of latex cleavage.


Subject(s)
Dioxygenases/chemistry , Latex/metabolism , Models, Molecular , Protein Conformation , Xanthomonas/enzymology , Dioxygenases/metabolism , Electron Spin Resonance Spectroscopy , Oxygen/metabolism
19.
Appl Environ Microbiol ; 81(11): 3793-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25819959

ABSTRACT

Specific polyisoprene-cleaving activities of 1.5 U/mg and 4.6 U/mg were determined for purified Strep-tagged latex clearing protein (Lcp) of Streptomyces sp. strain K30 at 23 °C and 37 °C, respectively. Metal analysis revealed the presence of approximately one atom of iron per Lcp molecule. Copper, which had been identified in Lcp1VH2 of Gordonia polyisoprenivorans previously, was below the detection limit in LcpK30. Heme was identified as a cofactor in purified LcpK30 by (i) detection of characteristic α-, ß-, and γ (Soret)-bands at 562 nm, 532 nm, and 430 nm in the visible spectrum after chemical reduction, (ii) detection of an acetone-extractable porphyrin molecule, (iii) determination of a heme b-type-specific absorption maximum (556 nm) after chemical conversion of the heme group to a bipyridyl-heme complex, and (iv) detection of a b-heme-specific m/z value of 616.2 via mass spectrometry. Spectroscopic analysis showed that purified Lcp as isolated contains an oxidized heme-Fe(3+) that is free of bound dioxygen. This is in contrast to the rubber oxygenase RoxA, a c-type heme-containing polyisoprene-cleaving enzyme present in Gram-negative rubber degraders, in which the covalently bound heme firmly binds a dioxygen molecule. LcpK30 also differed from RoxA in the lengths of the rubber degradation cleavage products and in having a higher melting point of 61.5 °C (RoxA, 54.3 °C). In summary, RoxA and Lcp both are equipped with a heme cofactor and catalyze an oxidative C-C cleavage reaction but differ in the heme subgroup type and in several biochemical and biophysical properties. These findings suggest differences in the catalytic reaction mechanisms.


Subject(s)
Biophysical Phenomena , Cytochromes b/metabolism , Latex/metabolism , Oxygenases/metabolism , Streptomyces/enzymology , Coenzymes/analysis , Cytochromes b/chemistry , Cytochromes b/isolation & purification , Heme/analysis , Metals/analysis , Spectrum Analysis , Temperature , Transition Temperature
20.
Appl Environ Microbiol ; 81(5): 1847-58, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25548058

ABSTRACT

Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/ß-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism.


Subject(s)
Bacterial Proteins/analysis , Bacterial Proteins/isolation & purification , Cupriavidus necator/chemistry , Cytoplasmic Granules/chemistry , Hydroxybutyrates/metabolism , Polyesters/metabolism , Proteome/analysis , Bacterial Proteins/genetics , Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Gene Deletion , Hydrolases/analysis , Hydrolases/genetics , Hydrolases/isolation & purification , Microscopy, Fluorescence , Operon , Phospholipases/analysis , Phospholipases/genetics , Phospholipases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL