Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Ther ; 29(1): 191-207, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33022212

ABSTRACT

The therapeutic effect of retinal gene therapy using CRISPR/Cas9-mediated genome editing and knockout applications is dependent on efficient and safe delivery of gene-modifying tool kits. Recently, transient administration of single guide RNAs (sgRNAs) and SpCas9 proteins delivered as ribonucleoproteins (RNPs) has provided potent gene knockout in vitro. To improve efficacy of CRISPR-based gene therapy, we delivered RNPs containing SpCas9 protein complexed to chemically modified sgRNAs (msgRNAs). In K562 cells, msgRNAs significantly increased the insertion/deletion (indel) frequency (25%) compared with unmodified counterparts leading to robust knockout of the VEGFA gene encoding vascular endothelial growth factor A (96% indels). Likewise, in HEK293 cells, lipoplexes containing varying amounts of RNP and EGFP mRNA showed efficient VEGFA knockout (43% indels) and strong EGFP expression, indicative of efficacious functional knockout using small amounts of RNP. In mice, subretinal injections of equivalent lipoplexes yielded 6% indels in Vegfa of isolated EGFP-positive RPE cells. However, signs of toxicity following delivery of lipoplexes containing high amounts of RNP were observed. Although the mechanism resulting in the varying efficacy remains to be elucidated, our data suggest that a single subretinal injection of RNPs carrying msgRNAs and SpCas9 induces targeted retinal indel formation, thus providing a clinically relevant strategy relying on nonviral delivery of short-lived nuclease activity.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Knockout Techniques , RNA, Guide, Kinetoplastida/genetics , Retina/metabolism , Ribonucleoproteins/metabolism , Vascular Endothelial Growth Factor A/genetics , Animals , Cell Line , Gene Transfer Techniques , Genetic Therapy , Humans , Mice , Transfection
2.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371261

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.


Subject(s)
Choroidal Neovascularization/physiopathology , Complement Activation/immunology , Wet Macular Degeneration/pathology , Animals , Humans , Wet Macular Degeneration/immunology
3.
Mol Ther Nucleic Acids ; 33: 469-482, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37583575

ABSTRACT

The year 2023 marks the 25th anniversary of the discovery of RNAi. RNAi-based therapeutics enable sequence-specific gene knockdown by eliminating target RNA molecules through complementary base-pairing. A systematic review of published and ongoing clinical trials was performed. Web of Science, PubMed, and Embase were searched from January 1, 1998, to December 30, 2022 for clinical trials using RNAi. Following inclusion, data from the articles were extracted according to a predefined protocol. A total of 90 trials published in 81 articles were included. In addition, ongoing clinical trials were retrieved from ClinicalTrials.gov, resulting in the inclusion of 48 trials. We investigated how maturation of RNAi-based therapeutics and developments in delivery platforms, administration routes, and potential targets shape the current landscape of clinically applied RNAi. Notably, most contemporary clinical trials used either N-acetylgalactosamine delivery and subcutaneous administration or lipid nanoparticle delivery and intravenous administration. In conclusion, RNAi therapeutics have gained great momentum during the past decade, resulting in five approved therapeutics targeting the liver for treatment of severe diseases, and the trajectory depicted by the ongoing trials emphasizes that even more RNAi-based medicines also targeting extra-hepatic tissues are likely to be available in the years to come.

4.
Mol Ther Nucleic Acids ; 28: 58-76, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35356684

ABSTRACT

Retinal gene therapy using RNA interference (RNAi) to silence targeted genes requires both efficacy and safety. Short hairpin RNAs (shRNAs) are useful for RNAi, but high expression levels and activity from the co-delivered passenger strand may cause undesirable cellular responses. Ago2-dependent shRNAs (agshRNAs) produce no passenger strand activity. To enhance efficacy and to investigate improvements in safety, we have generated VEGFA-targeting agshRNAs and microRNA (miRNA)-embedded agshRNAs (miR-agshRNAs) and inserted these RNAi effectors in Pol II/III-driven expression cassettes and lentiviral vectors (LVs). Compared with corresponding shRNAs, agshRNAs and miR-agshRNAs increased specificity and safety, while retaining a high knockdown efficacy and abolishing passenger strand activity. The agshRNAs also caused significantly smaller reductions in cell viability and reduced competition with the processing of endogenous miR21 compared with their shRNA counterparts. RNA sequencing (RNA-seq) analysis of LV-transduced ARPE19 cells revealed that expression of shRNAs in general leads to more changes in gene expression levels compared with their agshRNA counterparts and activation of immune-related pathways. In mice, subretinal delivery of LVs encoding tissue-specific miR-agshRNAs resulted in retinal pigment epithelium (RPE)-restricted expression and significant knockdown of Vegfa in transduced RPE cells. Collectively, our data suggest that agshRNAs and miR-agshRNA possess important advantages over shRNAs, thereby posing a clinically relevant approach with respect to efficacy, specificity, and safety.

5.
Invest Ophthalmol Vis Sci ; 63(9): 11, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35943733

ABSTRACT

Purpose: Animal models of choroidal neovascularization (CNV) are extensively used to characterize the pathophysiology of chorioretinal diseases with CNV formation and to evaluate novel treatment strategies. This systematic review aims to give a detailed overview of contemporary animal models of CNV. Methods: A systematic search was performed in PubMed and EMBASE from November 20, 2015, to November 20, 2020, for mammalian animal models of CNV. Following inclusion by two investigators, data from the articles were extracted according to a predefined protocol. Results: A total of 380 full articles, representing 409 independent animal models, were included. Mice were by far the most utilized animal (76%) followed by rats and non-human primates. The median age of rodents was 8 weeks but with a wide range. Male animals were used in 44% of the studies, but 32% did not report the sex. CNV was laser induced in 89% of the studies, but only 44% of these reported sufficiently on standard laser parameters. Surprisingly, 28% of the studies did not report a sample size for quantitative CNV evaluation. Less than half of the studies performed quantitative in vivo evaluation, and 73% evaluated CNV quantitatively ex vivo. Both in vivo and ex vivo evaluations were conducted primarily at day 7 and/or day 14. Conclusions: The laser-induced mouse model is the predominant model for experimental CNV. The widespread use of young, healthy male animals may complicate clinical translation, and inadequate reporting challenges reproducibility. Definition and implementation of standardized methodologic and reporting guidelines are attractive.


Subject(s)
Choroidal Neovascularization , Animals , Choroidal Neovascularization/drug therapy , Disease Models, Animal , Fluorescein Angiography/methods , Laser Coagulation/adverse effects , Male , Mammals , Mice , Mice, Inbred C57BL , Rats , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL