Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Infect Immun ; 79(11): 4342-52, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21859856

ABSTRACT

Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion/physiology , Biofilms , Gene Expression Regulation, Bacterial/physiology , Membrane Proteins/metabolism , Salmonella typhimurium/metabolism , Adhesins, Bacterial/genetics , Alum Compounds , Animals , Bacterial Adhesion/genetics , Caco-2 Cells , Escherichia coli K12/metabolism , Humans , Immunoglobulin G , Membrane Proteins/genetics , Mice , Phylogeny , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Virulence
2.
Free Radic Biol Med ; 120: 246-254, 2018 05 20.
Article in English | MEDLINE | ID: mdl-29555590

ABSTRACT

The generation of 3-nitrotyrosine, within proteins, is a post-translational modification resulting from oxidative or nitrative stress. It has been suggested that this modification could be used as a biomarker for inflammatory diseases. Despite the superiority of mass spectrometry-based determinations of nitrotyrosine, in a high-throughput clinical setting the measurement of nitrotyrosine by an enzyme-linked immunosorbent assay (ELISA) is likely to be more cost-effective. ELISAs offer an alternative means to detect nitrotyrosine, but many commercially available ELISAs are insufficiently sensitive to detect nitrotyrosine in healthy human serum. Here, we report the development, validation and clinical application of a novel electrochemiluminescence-based ELISA for nitrotyrosine which provides superior sensitivity (e.g. a 50-fold increase in sensitivity compared with one of the tested commercial colorimetric ELISAs). This nitrotyrosine ELISA has the following characteristics: a lower limit of quantitation of 0.04 nM nitrated albumin equivalents; intra- and inter-assay coefficients of variation of 6.5% and 11.3%, respectively; a mean recovery of 106 ±â€¯3% and a mean linearity of 0.998 ±â€¯0.001. Far higher nitration levels were measured in normal human blood cell populations when compared to plasma. Mass spectrometry was used to validate the new ELISA method. The analysis of the same set of chemically modified albumin samples using the ELISA method and mass spectrometry showed good agreement for the relative levels of nitration present in each sample. The assay was applied to serum samples from patients undergoing elective surgery which induces the human inflammatory response. Matched samples were collected before and one day after surgery. An increase in nitration was detected following surgery (median (IQR): 0.59 (0.00-1.34) and 0.97 (0.00-1.70) nitrotyrosine (fmol of nitrated albumin equivalents/mg protein) for pre- and post-surgery respectively. The reported assay is suitable for nitrotyrosine determination in patient serum samples, and may also be applicable as a means to determine oxidative stress in primary and cultured cell populations.


Subject(s)
Biomarkers/analysis , Enzyme-Linked Immunosorbent Assay/methods , Luminescent Measurements/methods , Oxidative Stress/physiology , Tyrosine/analogs & derivatives , Adult , Aged , Female , Humans , Male , Middle Aged , Tyrosine/analysis
3.
Biomolecules ; 5(2): 378-411, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25874603

ABSTRACT

Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.


Subject(s)
Advanced Oxidation Protein Products/metabolism , Mass Spectrometry/methods , Protein Processing, Post-Translational , Advanced Oxidation Protein Products/chemistry , Animals , Cardiovascular Diseases/metabolism , Humans , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL