Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829899

ABSTRACT

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Subject(s)
Cell Cycle Proteins , Cryptococcus neoformans , Mad2 Proteins , Spindle Apparatus , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mad2 Proteins/metabolism , Mad2 Proteins/genetics , Spindle Apparatus/metabolism , Spindle Apparatus/genetics , Signal Transduction , Fungal Proteins/metabolism , Fungal Proteins/genetics , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , M Phase Cell Cycle Checkpoints/genetics , Mitosis/genetics , Kinetochores/metabolism , Chromosome Segregation/genetics , Microtubules/metabolism , Microtubules/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
2.
EMBO J ; 41(14): e110611, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35695070

ABSTRACT

Protein phosphatase 2A (PP2A) is an abundant phosphoprotein phosphatase that acts as a tumor suppressor. For this reason, compounds able to activate PP2A are attractive anticancer agents. The compounds iHAP1 and DT-061 have recently been reported to selectively stabilize specific PP2A-B56 complexes to mediate cell killing. We were unable to detect direct effects of iHAP1 and DT-061 on PP2A-B56 activity in biochemical assays and composition of holoenzymes. Therefore, we undertook genome-wide CRISPR-Cas9 synthetic lethality screens to uncover biological pathways affected by these compounds. We found that knockout of mitotic regulators is synthetic lethal with iHAP1 while knockout of endoplasmic reticulum (ER) and Golgi components is synthetic lethal with DT-061. Indeed we showed that iHAP1 directly blocks microtubule assembly both in vitro and in vivo and thus acts as a microtubule poison. In contrast, DT-061 disrupts both the Golgi apparatus and the ER and lipid synthesis associated with these structures. Our work provides insight into the biological pathways perturbed by iHAP1 and DT-061 causing cellular toxicity and argues that these compounds cannot be used for dissecting PP2A-B56 biology.


Subject(s)
Apoptosis , Protein Phosphatase 2 , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Protein Processing, Post-Translational
3.
EMBO Rep ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951710

ABSTRACT

The centromere, defined by the enrichment of CENP-A (a Histone H3 variant) containing nucleosomes, is a specialised chromosomal locus that acts as a microtubule attachment site. To preserve centromere identity, CENP-A levels must be maintained through active CENP-A loading during the cell cycle. A central player mediating this process is the Mis18 complex (Mis18α, Mis18ß and Mis18BP1), which recruits the CENP-A-specific chaperone HJURP to centromeres for CENP-A deposition. Here, using a multi-pronged approach, we characterise the structure of the Mis18 complex and show that multiple hetero- and homo-oligomeric interfaces facilitate the hetero-octameric Mis18 complex assembly composed of 4 Mis18α, 2 Mis18ß and 2 Mis18BP1. Evaluation of structure-guided/separation-of-function mutants reveals structural determinants essential for cell cycle controlled Mis18 complex assembly and centromere maintenance. Our results provide new mechanistic insights on centromere maintenance, highlighting that while Mis18α can associate with centromeres and deposit CENP-A independently of Mis18ß, the latter is indispensable for the optimal level of CENP-A loading required for preserving the centromere identity.

4.
EMBO J ; 39(7): e103234, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32134144

ABSTRACT

Centromeres are microtubule attachment sites on chromosomes defined by the enrichment of histone variant CENP-A-containing nucleosomes. To preserve centromere identity, CENP-A must be escorted to centromeres by a CENP-A-specific chaperone for deposition. Despite this essential requirement, many eukaryotes differ in the composition of players involved in centromere maintenance, highlighting the plasticity of this process. In humans, CENP-A recognition and centromere targeting are achieved by HJURP and the Mis18 complex, respectively. Using X-ray crystallography, we here show how Drosophila CAL1, an evolutionarily distinct CENP-A histone chaperone, binds both CENP-A and the centromere receptor CENP-C without the requirement for the Mis18 complex. While an N-terminal CAL1 fragment wraps around CENP-A/H4 through multiple physical contacts, a C-terminal CAL1 fragment directly binds a CENP-C cupin domain dimer. Although divergent at the primary structure level, CAL1 thus binds CENP-A/H4 using evolutionarily conserved and adaptive structural principles. The CAL1 binding site on CENP-C is strategically positioned near the cupin dimerisation interface, restricting binding to just one CAL1 molecule per CENP-C dimer. Overall, by demonstrating how CAL1 binds CENP-A/H4 and CENP-C, we provide key insights into the minimalistic principles underlying centromere maintenance.


Subject(s)
Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila/metabolism , Amino Acid Sequence , Animals , Binding Sites , Centromere/chemistry , Centromere/metabolism , Crystallography, X-Ray , Drosophila Proteins/genetics , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutation , Protein Binding
5.
Genome Res ; 31(11): 2138-2154, 2021 11.
Article in English | MEDLINE | ID: mdl-34407985

ABSTRACT

Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by "writer" and "eraser" enzymes, respectively. Nucleosomal PTMs are recognized by a variety of "reader" proteins that alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 65 predicted readers, writers, and erasers of histone acetylation and methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 60 of them in the parasite's bloodstream form. ChIP-seq shows that 15 candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins show a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses identify distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET- and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcription start regions. The systematic approach used provides details of the composition and organization of the chromatin regulatory machinery in T. brucei and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.


Subject(s)
Chromatin , Trypanosoma brucei brucei , Chromatin/genetics , Chromatin/metabolism , Nucleosomes/metabolism , Protein Interaction Maps , Proteomics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism
6.
EMBO Rep ; 22(7): e52295, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33973335

ABSTRACT

The shugoshin proteins are universal protectors of centromeric cohesin during mitosis and meiosis. The binding of human hSgo1 to the PP2A-B56 phosphatase through a coiled-coil (CC) region mediates cohesion protection during mitosis. Here we undertook a structure function analysis of the PP2A-B56-hSgo1 complex, revealing unanticipated aspects of complex formation and function. We establish that a highly conserved pocket on the B56 regulatory subunit is required for hSgo1 binding and cohesion protection during mitosis in human somatic cells. Consistent with this, we show that hSgo1 blocks the binding of PP2A-B56 substrates containing a canonical B56 binding motif. We find that PP2A-B56 bound to hSgo1 dephosphorylates Cdk1 sites on hSgo1 itself to modulate cohesin interactions. Collectively our work provides important insight into cohesion protection during mitosis.


Subject(s)
Cell Cycle Proteins , Protein Phosphatase 2 , CDC2 Protein Kinase , Cell Cycle Proteins/genetics , Centromere , Humans , Meiosis , Mitosis , Protein Phosphatase 2/genetics
7.
EMBO J ; 37(6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29467217

ABSTRACT

The chromosomal passenger complex (CPC) is directed to centromeres during mitosis via binding to H3T3ph and Sgo1. Whether and how heterochromatin protein 1α (HP1α) influences CPC localisation and function during mitotic entry is less clear. Here, we alter HP1α dynamics by fusing it to a CENP-B DNA-binding domain. Tethered HP1 strongly recruits the CPC, destabilising kinetochore-microtubule interactions and activating the spindle assembly checkpoint. During mitotic exit, the tethered HP1 traps active CPC at centromeres. These HP1-CPC clusters remain catalytically active throughout the subsequent cell cycle. We also detect interactions between endogenous HP1 and the CPC during G2 HP1α and HP1γ cooperate to recruit the CPC to active foci in a CDK1-independent process. Live cell tracking with Fab fragments reveals that H3S10ph appears well before H3T3 is phosphorylated by Haspin kinase. Our results suggest that HP1 may concentrate and activate the CPC at centromeric heterochromatin in G2 before Aurora B-mediated phosphorylation of H3S10 releases HP1 from chromatin and allows pathways dependent on H3T3ph and Sgo1 to redirect the CPC to mitotic centromeres.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Heterochromatin/metabolism , Mitosis , Cell Line, Tumor , Centromere/metabolism , Chromobox Protein Homolog 5 , Humans , Phosphorylation
8.
Mol Cell ; 46(3): 274-86, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22483620

ABSTRACT

The Ska complex is an essential mitotic component required for accurate cell division in human cells. It is composed of three subunits that function together to establish stable kinetochore-microtubule interactions in concert with the Ndc80 network. We show that the structure of the Ska core complex is a W-shaped dimer of coiled coils, formed by intertwined interactions between Ska1, Ska2, and Ska3. The C-terminal domains of Ska1 and Ska3 protrude at each end of the homodimer, bind microtubules in vitro when connected to the central core, and are essential in vivo. Mutations disrupting the central coiled coil or the dimerization interface result in chromosome congression failure followed by cell death. The Ska complex is thus endowed with bipartite and cooperative tubulin-binding properties at the ends of a 350 Å-long molecule. We discuss how this symmetric architecture might complement and stabilize the Ndc80-microtubule attachments with analogies to the yeast Dam1/DASH complex.


Subject(s)
Chromosomal Proteins, Non-Histone/physiology , Kinetochores/metabolism , Microtubule-Associated Proteins/physiology , Microtubules/metabolism , Amino Acid Sequence , Binding Sites , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Humans , Kinetochores/chemistry , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Microtubules/chemistry , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment
9.
Nucleic Acids Res ; 46(21): 11274-11286, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30357352

ABSTRACT

The evolutionarily conserved nucleoplasmin family of histone chaperones has two paralogues in Drosophila, named Nucleoplasmin-Like Protein (NLP) and Nucleophosmin (NPH). NLP localizes to the centromere, yet molecular underpinnings of this localization are unknown. Moreover, similar to homologues in other organisms, NLP forms a pentamer in vitro, but the biological significance of its oligomerization has not been explored. Here, we characterize the oligomers formed by NLP and NPH in vivo and find that oligomerization of NLP is required for its localization at the centromere. We can further show that oligomerization-deficient NLP is unable to bind the centromeric protein Hybrid Male Rescue (HMR), which in turn is required for targeting the NLP oligomer to the centromere. Finally, using super-resolution microscopy we find that NLP and HMR largely co-localize in domains that are immediately adjacent to, yet distinct from centromere domains defined by the centromeric histone dCENP-A.


Subject(s)
Centromere Protein A/chemistry , Centromere/chemistry , Drosophila Proteins/chemistry , Drosophila melanogaster/genetics , Nuclear Proteins/chemistry , Nucleoplasmins/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Cells, Cultured , Centromere/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromatin/chemistry , Chromatin/metabolism , Cloning, Molecular , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Gene Expression , Models, Molecular , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Nucleoplasmins/genetics , Nucleoplasmins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
10.
EMBO Rep ; 18(6): 894-905, 2017 06.
Article in English | MEDLINE | ID: mdl-28377371

ABSTRACT

The centromere, a chromosomal locus that acts as a microtubule attachment site, is epigenetically specified by the enrichment of CENP-A nucleosomes. Centromere maintenance during the cell cycle requires HJURP-mediated CENP-A deposition, a process regulated by the Mis18 complex (Mis18α/Mis18ß/Mis18BP1). Spatial and temporal regulation of Mis18 complex assembly is crucial for its centromere association and function. Here, we provide the molecular basis for the assembly and regulation of the Mis18 complex. We show that the N-terminal region of Mis18BP1 spanning amino acid residues 20-130 directly interacts with Mis18α/ß to form the Mis18 complex. Within Mis18α/ß, the Mis18α MeDiY domain can directly interact with Mis18BP1. Mis18α/ß forms a hetero-hexamer with 4 Mis18α and 2 Mis18ß. However, only two copies of Mis18BP1 interact with Mis18α/ß to form a hetero-octameric assembly, highlighting the role of Mis18 oligomerization in limiting the number of Mis18BP1 within the Mis18 complex. Furthermore, we demonstrate the involvement of consensus Cdk1 phosphorylation sites on Mis18 complex assembly and thus provide a rationale for cell cycle-regulated timing of Mis18 assembly and CENP-A deposition.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/pharmacokinetics , Centromere Protein A/metabolism , Gene Expression Regulation , Adaptor Proteins, Signal Transducing/genetics , CDC2 Protein Kinase/genetics , Cell Cycle/genetics , Centromere/genetics , Centromere/physiology , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Nucleosomes , Phosphorylation , Protein Binding
11.
Front Genet ; 15: 1291063, 2024.
Article in English | MEDLINE | ID: mdl-38356699

ABSTRACT

Background: Moebius Syndrome (MBS) is a rare congenital neurological disorder characterized by paralysis of facial nerves, impairment of ocular abduction and other variable abnormalities. MBS has been attributed to both environmental and genetic factors as potential causes. Until now only two genes, PLXND1 and REV3L have been identified to cause MBS. Results: We present a 9-year-old male clinically diagnosed with MBS, presenting facial palsy, altered ocular mobility, microglossia, dental anomalies and congenital torticollis. Radiologically, he lacks both abducens nerves and shows altered symmetry of both facial and vestibulocochlear nerves. Whole-exome sequence identified a de novo missense variant c.643G>A; p.Gly215Arg in CHN1, encoding the α2-chimaerin protein. The p.Gly215Arg variant is located in the C1 domain of CHN1 where other pathogenic gain of function variants have been reported. Bioinformatic analysis and molecular structural modelling predict a deleterious effect of the missense variant on the protein function. Conclusion: Our findings support that pathogenic variants in the CHN1 gene may be responsible for different cranial congenital dysinnervation syndromes, including Moebius and Duane retraction syndromes. We propose to include CHN1 in the genetic diagnoses of MBS.

12.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38659940

ABSTRACT

During mitosis, interphase chromatin is rapidly converted into rod-shaped mitotic chromosomes. Using Hi-C, imaging, proteomics and polymer modeling, we determine how the activity and interplay between loop-extruding SMC motors accomplishes this dramatic transition. Our work reveals rules of engagement for SMC complexes that are critical for allowing cells to refold interphase chromatin into mitotic chromosomes. We find that condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. In contrast, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion while separating the sisters. Studies of mitotic chromosomes formed by cohesin, condensin II and condensin I alone or in combination allow us to develop new models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins do not freely pass one another but stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase loops are extruded in vivo at ~1-3 kb/sec by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.

13.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1493-503, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23897472

ABSTRACT

The sequence and structure of snake gourd seed lectin (SGSL), a nontoxic homologue of type II ribosome-inactivating proteins (RIPs), have been determined by mass spectrometry and X-ray crystallography, respectively. As in type II RIPs, the molecule consists of a lectin chain made up of two ß-trefoil domains. The catalytic chain, which is connected through a disulfide bridge to the lectin chain in type II RIPs, is cleaved into two in SGSL. However, the integrity of the three-dimensional structure of the catalytic component of the molecule is preserved. This is the first time that a three-chain RIP or RIP homologue has been observed. A thorough examination of the sequence and structure of the protein and of its interactions with the bound methyl-α-galactose indicate that the nontoxicity of SGSL results from a combination of changes in the catalytic and the carbohydrate-binding sites. Detailed analyses of the sequences of type II RIPs of known structure and their homologues with unknown structure provide valuable insights into the evolution of this class of proteins. They also indicate some variability in carbohydrate-binding sites, which appears to contribute to the different levels of toxicity exhibited by lectins from various sources.


Subject(s)
Plant Lectins/chemistry , Seeds/chemistry , Trichosanthes/chemistry , Amino Acid Sequence , Binding Sites , Carbohydrate Metabolism , Catalytic Domain , Crystallography, X-Ray , Disulfides/chemistry , Glycosylation , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Nucleotides/metabolism , Phylogeny , Plant Lectins/metabolism , Protein Conformation , Protein Structure, Tertiary , Ribosome Inactivating Proteins/chemistry , Sequence Homology, Amino Acid
14.
EMBO J ; 28(10): 1442-52, 2009 May 20.
Article in English | MEDLINE | ID: mdl-19360002

ABSTRACT

Ska1 and Ska2 form a complex at the kinetochore-microtubule (KT-MT) interface and are required for timely progression from metaphase to anaphase. Here, we use mass spectrometry to search for additional components of the Ska complex. We identify C13Orf3 (now termed Ska3) as a novel member of this complex and map the interaction domains among the three known components. Ska3 displays similar characteristics as Ska1 and Ska2: it localizes to the spindle and KT throughout mitosis and its depletion markedly delays anaphase transition. Interestingly, a more complete removal of the Ska complex by concomitant depletion of Ska1 and Ska3 results in a chromosome congression failure followed by cell death. This severe phenotype reflects a destabilization of KT-MT interactions, as demonstrated by reduced cold stability of KT fibres. Yet, the depletion of the Ska complex only marginally impairs KT localization of the KMN network responsible for MT attachment. We propose that the Ska complex functionally complements the KMN, providing an additional layer of stability to KT-MT attachment and possibly signalling completion of attachment to the spindle checkpoint.


Subject(s)
Cell Physiological Phenomena , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Interaction Mapping , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Cytokinesis , HeLa Cells , Humans , Protein Binding
15.
Curr Biol ; 33(19): 4187-4201.e6, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37714149

ABSTRACT

CENP-A chromatin specifies mammalian centromere identity, and its chaperone HJURP replenishes CENP-A when recruited by the Mis18 complex (Mis18C) via M18BP1/KNL2 to CENP-C at kinetochores during interphase. However, the Mis18C recruitment mechanism remains unresolved in species lacking M18BP1, such as fission yeast. Fission yeast centromeres cluster at G2 spindle pole bodies (SPBs) when CENP-ACnp1 is replenished and where Mis18C also localizes. We show that SPBs play an unexpected role in concentrating Mis18C near centromeres through the recruitment of Mis18 by direct binding to the major SPB linker of nucleoskeleton and cytoskeleton (LINC) component Sad1. Mis18C recruitment by Sad1 is important for CENP-ACnp1 chromatin establishment and acts in parallel with a CENP-C-mediated Mis18C recruitment pathway to maintain centromeric CENP-ACnp1 but operates independently of Sad1-mediated centromere clustering. SPBs therefore provide a non-chromosomal scaffold for both Mis18C recruitment and centromere clustering during G2. This centromere-independent Mis18-SPB recruitment provides a mechanism that governs de novo CENP-ACnp1 chromatin assembly by the proximity of appropriate sequences to SPBs and highlights how nuclear spatial organization influences centromere identity.


Subject(s)
Carrier Proteins , Chromosomal Proteins, Non-Histone , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Carrier Proteins/genetics , Centromere/metabolism , Centromere Protein A/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Interphase , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Spindle Pole Bodies/metabolism
16.
Wellcome Open Res ; 8: 332, 2023.
Article in English | MEDLINE | ID: mdl-37692131

ABSTRACT

Background: Unicorn™ software on Äkta liquid chromatography instruments outputs chromatography profiles of purified biological macromolecules. While the plots generated by the instrument software are very helpful to inspect basic chromatogram properties, they lack a range of useful annotation, customization and export options. Methods: We use the R Shiny framework to build an interactive app that facilitates the interpretation of chromatograms and the generation of figures for publications. Results: The app allows users to fit a baseline, to highlight selected fractions and elution volumes inside or under the plot (e.g. those used for downstream biochemical/biophysical/structural analysis) and to zoom into the plot. The app is freely available at https://ChromatoShiny.bio.ed.ac.uk. Conclusions: It requires no programming experience, so we anticipate that it will enable chromatography users to create informative, annotated chromatogram plots quickly and simply.

17.
Life Sci Alliance ; 6(12)2023 12.
Article in English | MEDLINE | ID: mdl-37793775

ABSTRACT

The Dam1 complex is essential for mitotic progression across evolutionarily divergent fungi. Upon analyzing amino acid (aa) sequences of Dad2, a Dam1 complex subunit, we identified a conserved 10-aa-long Dad2 signature sequence (DSS). An arginine residue (R126) in the DSS is essential for viability in Saccharomyces cerevisiae that possesses point centromeres. The corresponding arginine residues are functionally important but not essential for viability in Candida albicans and Cryptococcus neoformans; both carry several kilobases long regional centromeres. The purified recombinant Dam1 complex containing either Dad2ΔDSS or Dad2R126A failed to bind microtubules (MTs) or form any visible rings like the WT complex. Intriguingly, functional analysis revealed that the requirement of the conserved arginine residue for chromosome biorientation and mitotic progression reduced with increasing centromere length. We propose that plasticity of the invariant arginine of Dad2 in organisms with regional centromeres is achieved by conditional elevation of the kinetochore protein(s) to enable multiple kinetochore MTs to bind to each chromosome. The capacity of a chromosome to bind multiple kinetochore MTs may mask the deleterious effects of such lethal mutations.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Cell Cycle Proteins/genetics , Microtubules/genetics , Microtubules/metabolism , Centromere/genetics , Centromere/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Arginine/genetics , Arginine/metabolism
18.
Cells ; 13(1)2023 12 27.
Article in English | MEDLINE | ID: mdl-38201261

ABSTRACT

Increased nuclear size correlates with lower survival rates and higher grades for prostate cancer. The short-chain dehydrogenase/reductase (SDR) family member DHRS7 was suggested as a biomarker for use in prostate cancer grading because it is largely lost in higher-grade tumors. Here, we found that reduction in DHRS7 from the LNCaP prostate cancer cell line with normally high levels of DHRS7 increases nuclear size, potentially explaining the nuclear size increase observed in higher-grade prostate tumors where it is lost. An exogenous expression of DHRS7 in the PC3 prostate cancer cell line with normally low DHRS7 levels correspondingly decreases nuclear size. We separately tested 80 compounds from the Microsource Spectrum library for their ability to restore normal smaller nuclear size to PC3 cells, finding that estradiol propionate had the same effect as the re-expression of DHRS7 in PC3 cells. However, the drug had no effect on LNCaP cells or PC3 cells re-expressing DHRS7. We speculate that separately reported beneficial effects of estrogens in androgen-independent prostate cancer may only occur with the loss of DHRS7/ increased nuclear size, and thus propose DHRS7 levels and nuclear size as potential biomarkers for the likely effectiveness of estrogen-based treatments.


Subject(s)
Estradiol , Prostatic Neoplasms , Male , Humans , Estradiol/pharmacology , Propionates , Prostatic Neoplasms/drug therapy , Prostate , Estrogens , Oxidoreductases
19.
Elife ; 112022 09 28.
Article in English | MEDLINE | ID: mdl-36169304

ABSTRACT

Kinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid Trypanosoma brucei. Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs). Here, we report that SET27 and CRD1, together with four previously uncharacterized constituents, form the SET27 promoter-associated regulatory complex (SPARC), which is specifically enriched at TSRs. SET27 loss leads to aberrant RNAPII recruitment to promoter sites, accumulation of polyadenylated transcripts upstream of normal transcription start sites, and conversion of some normally unidirectional promoters to bidirectional promoters. Transcriptome analysis in the absence of SET27 revealed upregulated mRNA expression in the vicinity of SPARC peaks within the main body of chromosomes in addition to derepression of genes encoding variant surface glycoproteins (VSGs) located in subtelomeric regions. These analyses uncover a novel chromatin-associated complex required to establish accurate promoter position and directionality.


Subject(s)
Trypanosoma brucei brucei , Chromatin/metabolism , Heterochromatin/metabolism , Histone Methyltransferases/genetics , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , Transcription, Genetic , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/genetics
20.
J Cell Biol ; 221(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35878017

ABSTRACT

Kinetochore protein phosphorylation promotes the correction of erroneous microtubule attachments to ensure faithful chromosome segregation during cell division. Determining how phosphorylation executes error correction requires an understanding of whether kinetochore substrates are completely (i.e., all-or-none) or only fractionally phosphorylated. Using quantitative mass spectrometry (MS), we measured phospho-occupancy on the conserved kinetochore protein Hec1 (NDC80) that directly binds microtubules. None of the positions measured exceeded ∼50% phospho-occupancy, and the cumulative phospho-occupancy changed by only ∼20% in response to changes in microtubule attachment status. The narrow dynamic range of phospho-occupancy is maintained, in part, by the ongoing phosphatase activity. Further, both Cdk1-Cyclin B1 and Aurora kinases phosphorylate Hec1 to enhance error correction in response to different types of microtubule attachment errors. The low inherent phospho-occupancy promotes microtubule attachment to kinetochores while the high sensitivity of kinetochore-microtubule attachments to small changes in phospho-occupancy drives error correction and ensures high mitotic fidelity.


Subject(s)
Cytoskeletal Proteins , Kinetochores , Microtubules , Mitosis , Aurora Kinases/metabolism , CDC2 Protein Kinase/metabolism , Chromosome Segregation , Cyclin B1/metabolism , Cytoskeletal Proteins/metabolism , HeLa Cells , Humans , Kinetochores/metabolism , Microtubules/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL