Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pestic Biochem Physiol ; 197: 105692, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38072547

ABSTRACT

The extensive use of herbicides has raised concerns about crop damage, necessitating the development of effective herbicide safeners. Fluxofenim has emerged as a promising herbicide safener; however, it's underlying mechanism remains unclear. Here, we screened two inbred lines 407B and HYZ to investigate the detoxication of fluxofenim in mitigating metolachlor damage in sorghum. Metolachlor inhibited seedling growth in both 407B and HYZ, while, fluxofenim could significantly restore the growth of 407B, but not effectively complement the growth of HYZ. Fluxofenim significantly increased the activities of glutathione-S-transferase (GST) to decrease metolachlor residue in 407B, but not in HYZ. This implys that fluxofenim may reduce metolachlor toxicity by regulating its metabolism. Furthermore, metolachlor suppressed AUX-related and JA-related genes expression, while up-regulated the expression of SA-related genes. Fluxofenim also restored the expression of AUX-related and JA-related genes inhibited by metolachlor and further increased expression of SA-related genes. Moreover, we noted a significant increase in the content of trans-zeatin O-glucoside (tZOG) and Gibberellin1 (GA1) after the fluxofenim treatment. In conclusion, fluxofenim may reduce the injury of herbicide by affecting herbicide metabolism and regulating hormone signaling pathway.


Subject(s)
Herbicides , Sorghum , Herbicides/toxicity , Herbicides/metabolism , Sorghum/genetics , Transcriptome , Glutathione Transferase/metabolism , Edible Grain
2.
BMC Genomics ; 18(1): 51, 2017 01 07.
Article in English | MEDLINE | ID: mdl-28061813

ABSTRACT

BACKGROUND: Sorghum is mainly used as a human food and beverage source, playing an important role in the production of ethanol and other bio-industrial products. Thus it is regarded as a model crop for energy plants. Genetic map construction is the foundation for marker-assisted selection and gene cloning. So far several sorghum linkage maps have been reported using different kinds of molecular markers. However marker numbers and chromosome coverage are limited. As a result, it is difficult to get consistent results and the maps are hard to unify. In the present study, the genomes of 130 individuals consisting an F2 population together with their parents were surveyed using a high-throughput sequencing technique. A high-density linkage map was constructed using specific-locus amplified fragments (SLAF) markers. This map can provide information and serve as a reference for effective gene exploration, and for marker assisted-breeding program. RESULTS: A high-throughput sequencing method was adopted to screen SLAF markers with 130 F2 individuals from a cross between a grain sorghum variety, J204, and a sweet sorghum variety, Keter. In the present study, 52,928 suitable SLAF markers out of 43,528,021 pair-end reads were chosen to conduct genetic map construction, 12.0% of which were polymorphic. Among the 6353 polymorphic SLAF markers, 5829 (91.8%) were successfully genotyped in the F2 mapping population. Finally 2246 SLAF markers were obtained to construct a high-density genetic linkage map. The total distance of linkage map covering all 10 chromosomes was 2158.1 cM. The largest gap on each chromosome was 10.2 cM on average. The proportion of gaps less than and/or equal to 5.0 cM was averagely 98.1%. The markers on each chromosome ranged from 123 (chromosome 9) to 315 (chromosome 4) with a mean value of 224.6, the distance between adjacent markers ranged from 0.6 (chromosome 10) to 1.3 cM (chromosome 9) with an average distance of only 0.98 cM. CONCLUSION: A high density sorghum genetic map was constructed in this study. The total length was 2158.1 cM covering all 10 chromosomes with a total number of 2246 SLAF markers. The construction of this map can provide detailed information for accurate gene localization and cloning and application of marker-assisted breeding.


Subject(s)
Chromosome Mapping/methods , Nucleic Acid Amplification Techniques , Quantitative Trait Loci/genetics , Sorghum/genetics , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide
3.
Front Plant Sci ; 14: 1144265, 2023.
Article in English | MEDLINE | ID: mdl-36909379

ABSTRACT

Cadmium (Cd) pollution is a serious threat to plant growth and human health. Although the mechanisms controlling the Cd response have been elucidated in other species, they remain unknown in Sorghum (Sorghum bicolor (L.) Moench), an important C4 cereal crop. Here, one-week-old sorghum seedlings were exposed to different concentrations (0, 10, 20, 50, 100, and 150 µM) of CdCl2 and the effects of these different concentrations on morphological responses were evaluated. Cd stress significantly decreased the activities of the enzymes peroxidase (POD), superoxide dismutase (SOD), glutathione S-transferase (GST) and catalase (CAT), and increased malondialdehyde (MDA) levels, leading to inhibition of plant height, decreases in lateral root density and plant biomass production. Based on these results, 10 µM Cd concentration was chosen for further transcription and metabolic analyses. A total of 2683 genes and 160 metabolites were found to have significant differential abundances between the control and Cd-treated groups. Multi-omics integrative analysis revealed that the flavonoid biosynthesis pathway plays a critical role in regulating Cd stress responses in sorghum. These results provide new insights into the mechanism underlying the response of sorghum to Cd.

4.
Gene ; 836: 146669, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35710084

ABSTRACT

Sorghum (Sorghum bicolor) is the fifth important cereal and an industrial energy crop in the world. Growth Regulation Factors (GRFs) play an important role in response to environmental stress, however, the knowledge of GRFs relating to the pest resistance is lacking. Here, we identified 8 GRF genes harboring the typical QLQ (glutamine, leucine, glutamine) and WRC (tryptophan, arginine, cysteine) domains in Sorghum, which could be classified into 4 clades through phylogenetic analysis. The SbGRF genes express in most tissues, while more than half of them express at the highest level in inflorescence. To further investigate their possible role in stress response, we analyzed the transcriptomics data. The results showed that SbGRFs could respond to the abiotic stresses including heat, salt and drought stress. Furthermore, combined the data with qRT-PCR, SbGRF1, 2, 4 and 7 were identified as dominant genes response to the aphid-induced stress. SSR markers close to these genes were also searched. Above all, we summarized the SbGRFs and provided their potential roles in aphid response.


Subject(s)
Aphids , Sorghum , Animals , Aphids/genetics , Edible Grain , Gene Expression Regulation, Plant , Glutamine/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sorghum/genetics , Stress, Physiological/genetics
5.
PLoS One ; 10(5): e0127065, 2015.
Article in English | MEDLINE | ID: mdl-25984727

ABSTRACT

Sorghum is one of the most promising bioenergy crops. Stem juice yield, together with stem sugar concentration, determines sugar yield in sweet sorghum. Bulked segregant analysis (BSA) is a gene mapping technique for identifying genomic regions containing genetic loci affecting a trait of interest that when combined with deep sequencing could effectively accelerate the gene mapping process. In this study, a dry stem sorghum landrace was characterized and the stem water controlling locus, qSW6, was fine mapped using QTL analysis and the combined BSA and deep sequencing technologies. Results showed that: (i) In sorghum variety Jiliang 2, stem water content was around 80% before flowering stage. It dropped to 75% during grain filling with little difference between different internodes. In landrace G21, stem water content keeps dropping after the flag leaf stage. The drop from 71% at flowering time progressed to 60% at grain filling time. Large differences exist between different internodes with the lowest (51%) at the 7th and 8th internodes at dough stage. (ii) A quantitative trait locus (QTL) controlling stem water content mapped on chromosome 6 between SSR markers Ch6-2 and gpsb069 explained about 34.7-56.9% of the phenotypic variation for the 5th to 10th internodes, respectively. (iii) BSA and deep sequencing analysis narrowed the associated region to 339 kb containing 38 putative genes. The results could help reveal molecular mechanisms underlying juice yield of sorghum and thus to improve total sugar yield.


Subject(s)
Chromosome Segregation/genetics , Genetic Loci , High-Throughput Nucleotide Sequencing/methods , Humidity , Physical Chromosome Mapping/methods , Plant Stems/physiology , Sorghum/genetics , Chromosomes, Plant/genetics , Genes, Plant , Genetic Association Studies , Genetic Linkage , Genetic Markers , Molecular Sequence Annotation , Quantitative Trait Loci/genetics , Sorghum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL