Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain ; 147(7): 2579-2592, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38425314

ABSTRACT

Anti-IgLON5 disease is a rare and likely underdiagnosed subtype of autoimmune encephalitis. The disease displays a heterogeneous phenotype that includes sleep, movement and bulbar-associated dysfunction. The presence of IgLON5-antibodies in CSF/serum, together with a strong association with HLA-DRB1*10:01∼DQB1*05:01, supports an autoimmune basis. In this study, a multicentric human leukocyte antigen (HLA) study of 87 anti-IgLON5 patients revealed a stronger association with HLA-DQ than HLA-DR. Specifically, we identified a predisposing rank-wise association with HLA-DQA1*01:05∼DQB1*05:01, HLA-DQA1*01:01∼DQB1*05:01 and HLA-DQA1*01:04∼DQB1*05:03 in 85% of patients. HLA sequences and binding cores for these three DQ heterodimers were similar, unlike those of linked DRB1 alleles, supporting a causal link to HLA-DQ. This association was further reflected in an increasingly later age of onset across each genotype group, with a delay of up to 11 years, while HLA-DQ-dosage dependent effects were also suggested by reduced risk in the presence of non-predisposing DQ1 alleles. The functional relevance of the observed HLA-DQ molecules was studied with competition binding assays. These proof-of-concept experiments revealed preferential binding of IgLON5 in a post-translationally modified, but not native, state to all three risk-associated HLA-DQ receptors. Further, a deamidated peptide from the Ig2-domain of IgLON5 activated T cells in two patients, compared with one control carrying HLA-DQA1*01:05∼DQB1*05:01. Taken together, these data support a HLA-DQ-mediated T-cell response to IgLON5 as a potentially key step in the initiation of autoimmunity in this disease.


Subject(s)
HLA-DQ beta-Chains , HLA-DRB1 Chains , Humans , HLA-DRB1 Chains/genetics , Male , HLA-DQ beta-Chains/genetics , Female , Middle Aged , Adult , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/immunology , Aged , Autoantibodies/immunology , Genetic Predisposition to Disease , Young Adult , Adolescent , Genotype
2.
Front Immunol ; 15: 1374828, 2024.
Article in English | MEDLINE | ID: mdl-39026668

ABSTRACT

Introduction: Innate lymphoid cells (ILCs) are enriched at mucosal surfaces where they respond rapidly to environmental stimuli and contribute to both tissue inflammation and healing. Methods: To gain insight into the role of ILCs in the pathology and recovery from COVID-19 infection, we employed a multi-omics approach consisting of Abseq and targeted mRNA sequencing to respectively probe the surface marker expression, transcriptional profile and heterogeneity of ILCs in peripheral blood of patients with COVID-19 compared with healthy controls. Results: We found that the frequency of ILC1 and ILC2 cells was significantly increased in COVID-19 patients. Moreover, all ILC subsets displayed a significantly higher frequency of CD69-expressing cells, indicating a heightened state of activation. ILC2s from COVID-19 patients had the highest number of significantly differentially expressed (DE) genes. The most notable genes DE in COVID-19 vs healthy participants included a) genes associated with responses to virus infections and b) genes that support ILC self-proliferation, activation and homeostasis. In addition, differential gene regulatory network analysis revealed ILC-specific regulons and their interactions driving the differential gene expression in each ILC. Discussion: Overall, this study provides mechanistic insights into the characteristics of ILC subsets activated during COVID-19 infection.


Subject(s)
COVID-19 , Immunity, Innate , Lymphocytes , Adult , Aged , Female , Humans , Male , Middle Aged , COVID-19/immunology , COVID-19/genetics , Gene Expression Profiling , Gene Regulatory Networks , Lymphocytes/immunology , Lymphocytes/metabolism , Multiomics , Single-Cell Analysis , Transcriptome
3.
PNAS Nexus ; 3(8): pgae325, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39161730

ABSTRACT

The regulation of inflammation is a critical aspect of disease tolerance and naturally acquired clinical immunity to malaria. Here, we demonstrate using RNA sequencing and epigenetic landscape profiling by cytometry by time-of-flight, that the regulation of inflammatory pathways during asymptomatic parasitemia occurs downstream of pathogen sensing-at the epigenetic level. The abundance of certain epigenetic markers (methylation of H3K27 and dimethylation of arginine residues) and decreased prevalence of histone variant H3.3 correlated with suppressed cytokine responses among monocytes of Ugandan children. Such an epigenetic signature was observed across diverse immune cell populations and not only characterized active asymptomatic parasitemia but also correlated with future long-term disease tolerance and clinical immunity when observed in uninfected children. Pseudotime analyses revealed a potential trajectory of epigenetic change that correlated with a child's age and recent parasite exposure and paralleled the acquisition of clinical immunity. Thus, our data support a model whereby exposure to Plasmodium falciparum induces epigenetic changes that regulate excessive inflammation and contribute to naturally acquire clinical immunity to malaria.

SELECTION OF CITATIONS
SEARCH DETAIL