Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Database (Oxford) ; 20202020 01 01.
Article in English | MEDLINE | ID: mdl-31942978

ABSTRACT

Disease causative non-coding RNAs (ncRNAs) are of great importance in understanding a disease, for they directly contribute to the development or progress of a disease. Identifying the causative ncRNAs can provide vital implications for biomedical researches. In this work, we updated the long non-coding RNA disease database (LncRNADisease) with long non-coding RNA (lncRNA) causality information with manual annotations of the causal associations between lncRNAs/circular RNAs (circRNAs) and diseases by reviewing related publications. Of the total 11 568 experimental associations, 2297 out of 10 564 lncRNA-disease associations and 198 out of 1004 circRNA-disease associations were identified to be causal, whereas 635 lncRNAs and 126 circRNAs were identified to be causative for the development or progress of at least one disease. The updated information and functions of the database can offer great help to future researches involving lncRNA/circRNA-disease relationship. The latest LncRNADisease database is available at http://www.rnanut.net/lncrnadisease.


Subject(s)
Databases, Nucleic Acid , Disease/genetics , Molecular Sequence Annotation , RNA, Long Noncoding/genetics , Humans
2.
Front Genet ; 10: 1342, 2019.
Article in English | MEDLINE | ID: mdl-32038710

ABSTRACT

Different genes have their protein products localized in various subcellular compartments. The diversity in protein localization may serve as a gene characteristic, revealing gene essentiality from a subcellular perspective. To measure this diversity, we introduced a Subcellular Diversity Index (SDI) based on the Gene Ontology-Cellular Component Ontology (GO-CCO) and a semantic similarity measure of GO terms. Analyses revealed that SDI of human genes was well correlated with some known measures of gene essentiality, including protein-protein interaction (PPI) network topology measurements, dN/dS ratio, homologous gene number, expression level and tissue specificity. In addition, SDI had a good performance in predicting human essential genes (AUC = 0.702) and drug target genes (AUC = 0.704), and drug targets with higher SDI scores tended to cause more side-effects. The results suggest that SDI could be used to identify novel drug targets and to guide the filtering of drug targets with fewer potential side effects. Finally, we developed a user-friendly online database for querying SDI score for genes across eight species, and the predicted probabilities of human drug target based on SDI. The online database of SDI is available at: http://www.cuilab.cn/sdi.

3.
Front Genet ; 10: 935, 2019.
Article in English | MEDLINE | ID: mdl-31632446

ABSTRACT

MicroRNAs (miRNAs) are one class of important noncoding RNA molecules, and their dysfunction is associated with a number of diseases. Currently, a series of databases and algorithms have been developed for dissecting human miRNA-disease associations. However, these tools only presented the associations between miRNAs and disease but did not address whether the associations are causal or not, a key biomedical issue that is critical for understanding the roles of candidate miRNAs in the mechanisms of specific diseases. Here we first manually curated causal miRNA-disease association information and updated the human miRNA disease database (HMDD) accordingly. Then we built a computational model, MDCAP (MiRNA-Disease Causal Association Predictor), to predict novel causal miRNA-disease associations. As a result, we collected 6,667 causal miRNA-disease associations between 616 miRNAs and 440 diseases, which accounts for ∼20% of the total data in HMDD. The MDCAP model achieved an area under the receiver operating characteristic (ROC) curve of 0.928 for ROC analysis by independent test and an area under the ROC curve of 0.925 for ROC analysis by 10-fold cross-validation. Finally, case studies conducted on myocardial infarction and hsa-mir-498 further suggested the biomedical significance of the predictions.

4.
Cell Death Discov ; 4: 26, 2018.
Article in English | MEDLINE | ID: mdl-30155276

ABSTRACT

Aging is a complex biological process that is far from being completely understood. Analyzing transcriptional differences across age might help uncover genetic bases of aging. In this study, 1573 differentially expressed genes, related to chronological age, from the Genotype-Tissue Expression (GTEx) project, were categorized as upregulated age-associated genes (UAGs) and downregulated age-associated genes (DAGs). Characteristics in evolution, expression, function and molecular networks were comprehensively described and compared for UAGs, DAGs and other genes. Analyses revealed that UAGs are more clustered, more quickly evolving, more tissue specific and have accumulated more single-nucleotide polymorphisms (SNPs) and disease genes than DAGs. DAGs were found with a lower evolutionary rate, higher expression level, greater homologous gene number, smaller phyletic age and earlier expression in body development. UAGs are more likely to be located in the extracellular region and to occur in both immune-relevant processes and cancer-related pathways. By contrast, DAGs are more likely to be located intracellularly and to be enriched in catabolic and metabolic processes. Moreover, DAGs are also critical in a protein-protein interaction (PPI) network, whereas UAGs have more influence on a signaling network. This study highlights characteristics of the aging transcriptional landscape in a healthy population, which may benefit future studies on the aging process and provide a broader horizon for age-dependent precision medicine.

SELECTION OF CITATIONS
SEARCH DETAIL