Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 590(7846): 498-503, 2021 02.
Article in English | MEDLINE | ID: mdl-33361816

ABSTRACT

Histone methyltransferases of the nuclear receptor-binding SET domain protein (NSD) family, including NSD1, NSD2 and NSD3, have crucial roles in chromatin regulation and are implicated in oncogenesis1,2. NSD enzymes exhibit an autoinhibitory state that is relieved by binding to nucleosomes, enabling dimethylation of histone H3 at Lys36 (H3K36)3-7. However, the molecular basis that underlies this mechanism is largely unknown. Here we solve the cryo-electron microscopy structures of NSD2 and NSD3 bound to mononucleosomes. We find that binding of NSD2 and NSD3 to mononucleosomes causes DNA near the linker region to unwrap, which facilitates insertion of the catalytic core between the histone octamer and the unwrapped segment of DNA. A network of DNA- and histone-specific contacts between NSD2 or NSD3 and the nucleosome precisely defines the position of the enzyme on the nucleosome, explaining the specificity of methylation to H3K36. Intermolecular contacts between NSD proteins and nucleosomes are altered by several recurrent cancer-associated mutations in NSD2 and NSD3. NSDs that contain these mutations are catalytically hyperactive in vitro and in cells, and their ectopic expression promotes the proliferation of cancer cells and the growth of xenograft tumours. Together, our research provides molecular insights into the nucleosome-based recognition and histone-modification mechanisms of NSD2 and NSD3, which could lead to strategies for therapeutic targeting of proteins of the NSD family.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Nuclear Proteins/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Repressor Proteins/metabolism , Binding Sites , Biocatalysis , Cell Line, Tumor , Cell Proliferation , Cryoelectron Microscopy , Heterografts , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/ultrastructure , Histones/ultrastructure , Humans , Methylation , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Mutation , Neoplasm Transplantation , Neoplasms/genetics , Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/ultrastructure , Nucleosomes/ultrastructure , Phenotype , Protein Binding , Repressor Proteins/genetics , Repressor Proteins/ultrastructure
2.
Nucleic Acids Res ; 51(2): 574-594, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36537216

ABSTRACT

The lysine acetyltransferase KAT6A (MOZ, MYST3) belongs to the MYST family of chromatin regulators, facilitating histone acetylation. Dysregulation of KAT6A has been implicated in developmental syndromes and the onset of acute myeloid leukemia (AML). Previous work suggests that KAT6A is recruited to its genomic targets by a combinatorial function of histone binding PHD fingers, transcription factors and chromatin binding interaction partners. Here, we demonstrate that a winged helix (WH) domain at the very N-terminus of KAT6A specifically interacts with unmethylated CpG motifs. This DNA binding function leads to the association of KAT6A with unmethylated CpG islands (CGIs) genome-wide. Mutation of the essential amino acids for DNA binding completely abrogates the enrichment of KAT6A at CGIs. In contrast, deletion of a second WH domain or the histone tail binding PHD fingers only subtly influences the binding of KAT6A to CGIs. Overexpression of a KAT6A WH1 mutant has a dominant negative effect on H3K9 histone acetylation, which is comparable to the effects upon overexpression of a KAT6A HAT domain mutant. Taken together, our work revealed a previously unrecognized chromatin recruitment mechanism of KAT6A, offering a new perspective on the role of KAT6A in gene regulation and human diseases.


Subject(s)
Chromatin , Histone Acetyltransferases , Histones , Humans , Chromatin/genetics , CpG Islands/genetics , DNA , Histone Acetyltransferases/metabolism , Histones/metabolism , Acetylation
3.
Mol Ecol ; 32(22): 5971-5985, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37861465

ABSTRACT

Weedy rice (Oryza spp.) is a weedy relative of the cultivated rice that competes with the crop and causes significant production loss. The BHA (blackhull awned) US weedy rice group has evolved from aus cultivated rice and differs from its ancestors in several important weediness traits, including flowering time, plant height and seed shattering. Prior attempts to determine the genetic basis of weediness traits in plants using linkage mapping approaches have not often considered weed origins. However, the timing of divergence between crossed parents can affect the detection of quantitative trait loci (QTL) relevant to the evolution of weediness. Here, we used a QTL-seq approach that combines bulked segregant analysis and high-throughput whole genome resequencing to map the three important weediness traits in an F2 population derived from a cross between BHA weedy rice with an ancestral aus cultivar. We compared these QTLs with those previously detected in a cross of BHA with a more distantly related crop, indica. We identified multiple QTLs that overlapped with regions under selection during the evolution of weedy BHA rice and some candidate genes possibly underlying the evolution weediness traits in BHA. We showed that QTLs detected with ancestor-descendant crosses are more likely to be involved in the evolution of weediness traits than those detected from crosses of more diverged taxa.


Subject(s)
Oryza , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Oryza/genetics , Chromosome Mapping , Phenotype , Sequence Analysis, DNA , Plant Weeds/genetics
4.
Oral Dis ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37154262

ABSTRACT

OBJECTIVE: Small extracellular vesicle (sEV)-mediated intercellular communication is increasingly the key for the understanding of venous malformations (VMs). This study aims to clarify the detailed changes of sEVs in VMs. SUBJECTS AND METHODS: Fifteen VM patients without treatment history and twelve healthy donors were enrolled in the study. sEVs were isolated from both fresh lesions and cell supernatant, and were examined by western blotting, nanoparticle tracking analysis and transmission electron microscopy. Western blot analysis, immunohistochemistry and immunofluorescence were adopted to screening candidate regulator of sEV size. Specific inhibitors and siRNA were employed to validate the role of dysregulated p-AKT/vacuolar protein sorting-associated protein 4B (VPS4B) signaling on the size of sEVs in endothelial cells. RESULTS: The size of sEVs derived from both VM lesion tissues and cell model was significantly increased. VPS4B, whose expression level was mostly significantly downregulated in VM endothelial cells, was responsible for the size change of sEVs. Targeting abnormal AKT activation corrected the size change of sEVs by recovering the expression level of VPS4B. CONCLUSION: Downregulated VPS4B in endothelial cells, resulted from abnormally activated AKT signaling, contributed to the increased size of sEVs in VMs.

5.
Plant Dis ; 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36607325

ABSTRACT

In August 2021, bacterial leaf blight-like symptoms were observed on 14 out of 570 rice genotypes (Oryza sativa) in research field plots of global rice germplasm grown in Arkansas (eXtra Figure S1. A & B). The disease was characterized by spreading lesions on leaves, panicle sterility and reduced yield in highly susceptible, mature rice germplasm. No spread of disease to nearby plants was observed. Isolations were performed at Colorado State University, where soakates from symptomatic leaves were spread onto nutrient agar. After 72 h at 28°C, uniform, distinct, yellow-colored bacterial colonies were observed. To screen for the presence of common rice bacterial pathogens, PCR amplification directly from colonies or from DNA isolated from symptomatic field-collected leaves was performed. Primers specific for Xanthomonas oryzae pvs. oryzae and oryzicola (Lang et al., 2010), Burkholderia glumae (Echeverri-Rico et al., 2021), and Pseudomonas fuscovaginae (Ash et al., 2014) did not amplify indicating these organisms were not present. Sequencing of 16S rRNA gene (Weisburg et al., 1991) amplicons suggested the bacteria belonged to the genera Pantoea and Sphingomonas (NCBI accession no. OP683332 and OP683333, respectively). Amplicons resulting from primers specific to the gyrB gene region of P. ananatis (Kini et al., 2021) were sequenced and the fragment was compared to the P. ananatis PA13 reference genome using a BLAST analysis. One candidate (AR358) showed 100% identity with the P. ananatis gyrB region. Primers specific for Sphingomonas sp. (Bangratz et al., 2020) confirmed the second candidate (AR359) as a Sphingomonas sp. The identity of P. ananatis was confirmed by the Plant Pathogen Confirmatory Diagnostics Laboratory (Beltsville, MD, USA). To determine pathogenicity, leaves from 7-day-old seedlings of rice (Oryza sativa) cultivar Kitaake were scissor-clip inoculated (Kauffman et al., 1973) with four different treatments and compared to control leaves inoculated with sterile water. Treatments for the experiment consisted of bacterial suspensions (108 CFU/ml) of the two candidate organisms, P. ananatis (strain AR358) or Sphingomonas sp. (strain AR359), individually or in a 1:1 ratio of P. ananatis:Sphingomonas sp., or soakate from infected field tissue. Lesions similar to those observed in the field were only detected on leaves inoculated with P. ananatis or infected field tissue soakate at 7-days post-inoculation (eXtra Figure S1. C). Bacteria were recovered from the leaves of the artificially inoculated seedlings from three treatments (P. ananatis, P. ananatis:Sphingomonas sp. and soakate from the infected field tissue) and were determined to be P. ananatis based on colony morphology, amplification of 16s rRNA, and gyrB sequence data. Our results confirm the pathogenicity of P. ananatis to rice and fulfill Koch's postulates. P. ananatis was also recovered from several similarly diseased rice breeding lines at the University of Arkansas System Division of Agriculture Rice Research and Extension Center. We conclude that P. ananatis is the causal pathogen for leaf blight-like symptoms observed in the global rice cultivars grown in Arkansas. P. ananatis was previously reported as a pathogen on rice in several rice growing regions, including China (Yu et al., 2021), India (Reshma et al., 2022), and Africa (Kini et al., 2017), however, this is the first report of P. ananatis as a pathogen of rice in the United States.

6.
Plant Dis ; 2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37807096

ABSTRACT

Rice blast, caused by Magnaporthe oryzae, is the most destructive rice disease worldwide. The disease symptoms are usually expressed on the leaf and panicle. The leaf disease intensity in controlled environmental conditions is frequently quantified using a 0-5 scale, where 0 represents the absence of symptoms and 5 represents large eyespot lesions. However, this scale restricts the qualitative classification of the varieties into intermediate resistant and susceptible categories. Here we develop a 0-6 scale for blast disease that allows proper assignment of rice breeding lines and varieties into six resistance levels (highly resistant, resistant, moderate resistant, moderate susceptible, susceptible, and highly susceptible). We evaluated 41 common rice varieties against four major blast races (IB1, IB17, IB49, and IE1-K). Varieties carrying the Pi-ta gene were either highly resistant, resistant, or moderate resistant to IB17. The IE1-K race was able to break Pi-ta-mediate resistance of the rice varieties. The Pi-z gene conferred resistance to the IB17 and IE1-K races. The varieties M201, Cheniere, and Frontier were highly susceptible (score 6; 100% disease) to the race IE1-K. Moreover, varieties that were resistant or susceptible to all four blast races also showed similar levels of resistance/susceptibility to blast disease in the field. Taken together, our data proved that the 0-6 blast scale can efficiently determine the resistance levels of rice varieties against major blast races. This robust method will assist rice breeding programs to incorporate durable resistance against major and emerging blast races.

7.
Cell Tissue Res ; 390(2): 229-243, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35916917

ABSTRACT

Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells. However, the existence and role of VW-SCs in VMs is still unclear at present. In this study, the level and distribution of VW-SCs in 22 specimens of VMs were measured by immunochemistry, double-labeling immunofluorescence, and qPCR, followed by the Spearman rank correlation test. We found that both the protein and mRNA expression levels of CD34, vWF, VEGFR2, CD44, CD90, and CD105 were significantly downregulated in VMs compared with that in normal venules. VW-SCs were sporadically distributed or even absent within and outside the endothelium of VMs. The expression of the VW-SC-related markers was positively correlated with the density of both endothelial cells and perivascular cells. All those results and established evidence indicated that VW-SCs were more sporadically distributed with fewer amounts in VMs, which possibly contributing to the deficiency of vascular cells in VMs.


Subject(s)
Endothelial Cells , Vascular Malformations , Humans , Endothelial Cells/metabolism , Vascular Malformations/metabolism , Stem Cells/metabolism , Pericytes/metabolism
8.
Plant Dis ; 106(4): 1175-1182, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34739330

ABSTRACT

Rice blast caused by the fungus Magnaporthe oryzae (syn. Magnaporthe grisea) is one of the most lethal diseases for sustainable rice production worldwide. Blast resistance mediated by major resistance genes is often broken down after a short period of deployment, while minor blast resistance genes, each providing a small effect on disease reactions, are more durable. In the present study, we first evaluated disease reactions of two rice breeding parents 'Minghui 63' and 'M-202' with 11 blast races, IA45, IB1, IB45, IB49, IB54, IC1, IC17, ID1, IE1, IG1, and IH1, commonly present in the United States, under greenhouse conditions using a category disease rating resembling infection types under field conditions. 'Minghui 63' exhibited differential resistance responses in comparison with those of 'M-202' to the tested blast races. A recombinant inbred line (RIL) population of 275 lines from a cross between 'Minghui 63' and 'M-202' was also evaluated with the above-mentioned blast races. The population was genotyped with 156 simple sequence repeat (SSR) and insertion and deletion (Indel) markers. A linkage map with a genetic distance of 1,022.84 cM was constructed using inclusive composite interval mapping (ICIM) software. A total of 10 resistance QTLs, eight from 'Minghui 63' and two from 'M-202', were identified. One major QTL, qBLAST2 on chromosome 2, was identified by seven races/isolates. The remaining nine minor resistance QTLs were mapped on chromosomes 1, 3, 6, 9, 10, 11, and 12. These findings provide useful genetic markers and resources to tag minor blast resistance genes for marker-assisted selection in rice breeding program and for further studies of underlying genes.


Subject(s)
Magnaporthe , Oryza , Genes, Plant/genetics , Magnaporthe/genetics , Oryza/genetics , Oryza/microbiology , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology
9.
Plant Dis ; 106(6): 1675-1680, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34962412

ABSTRACT

Rice resistance (R) genes have been effectively deployed to prevent blast disease caused by the fungal pathogen Magnaporthe oryzae, one of the most serious threats for stable rice production worldwide. Weedy rice competing with cultivated rice may carry novel or lost R genes. The quantitative trait locus qBR12.3b was previously mapped between two single nucleotide polymorphism markers at the 10,633,942-bp and 10,820,033-bp genomic positions in a black-hull-awned (BHA) weed strain using a weed-crop-mapping population under greenhouse conditions. In this study, we found a portion of the known resistance gene Ptr encoding a protein with four armadillo repeats and confers a broad spectrum of blast resistance. We then analyzed the sequences of the Ptr gene from weedy rice, PtrBHA, and identified a unique amino acid glutamine at protein position 874. Minor changes of protein conformation of the PtrBHA gene were predicted through structural analysis of PtrBHA, suggesting that the product of PtrBHA is involved in disease resistance. A gene-specific codominant marker HJ17-13 from PtrBHA was then developed to distinguish alleles in weeds and crops. The PtrBHA gene existed in 207 individuals of the same mapping population, where qBR12.3b was mapped using this gene-specific marker. Disease reactions of 207 individuals and their parents to IB-33 were evaluated. The resistant individuals had PtrBHA whereas the susceptible individuals did not, suggesting that HJ17-13 is reliable to predict qBR12.3b. Taken together, this newly developed marker, and weedy rice genotypes carrying qBR12.3b, are useful for blast improvement using marker assisted selection.


Subject(s)
Oryza , Alleles , Genes, Plant , Genetic Markers , Oryza/genetics , Oryza/microbiology , Plant Diseases/microbiology , Plant Weeds/genetics
10.
Mol Carcinog ; 60(11): 758-768, 2021 11.
Article in English | MEDLINE | ID: mdl-34432915

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancy. Our study uses multipoint materials to explore the heterogeneity and metastasis mechanism of OSCC to find more accurate molecular markers and new therapeutic targets. By using whole-exome capture and sequencing and tumor evolution analysis, we found that most clone-driven mutations were located in the branches of tumor phylogenetic tree, such as COTL1, CASP8, and PROCR. Most clone-driven OSCC mutations occur mainly in tumor suppressor genes, including TP53, SFRP4, and NOTCH1. Our study on intratumor heterogeneity (ITH) and clonal evolution provides an important molecular basis for further understanding of OSCC occurrence and development and metastasis and provides potential targets for the treatment of this disease.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Exome Sequencing/methods , Mouth Neoplasms/genetics , Mutation , Clonal Evolution , Evolution, Molecular , Genes, Tumor Suppressor , Genetic Heterogeneity , Humans , Proto-Oncogenes
11.
Theor Appl Genet ; 134(3): 875-885, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33392709

ABSTRACT

KEY MESSAGE: Major fertility restorer locus for Aegilops kotschyi cytoplasm in wheat, Rfk1, was mapped to chromosome arm 1BS. Most likely candidate gene is TraesCS1B02G197400LC, which is predicted to encode a pectinesterase/pectinesterase inhibitor. Cytoplasmic male sterility (CMS) is widely used for heterosis and hybrid seed production in wheat. Genes related to male fertility restoration in the presence of Aegilops kotschyi cytoplasm have been reported, but the fertility restoration-associated gene loci have not been investigated systematically. In this study, a BC1F1 population derived from a backcross between KTP116A, its maintainer line TP116B, and its restorer line LK783 was employed to map fertility restoration by bulked segregant RNA-Seq (BSR-Seq). A major fertility allele restorer locus for Ae. kotschyi cytoplasm in wheat, Rfk1, was mapped to chromosome arm 1BS, and it was contributed by LK783. Morphological and cytological studies showed that male fertility restoration occurred mainly after the late uninucleate stage. Based on simple sequence repeat and single-nucleotide polymorphism genotyping, the gene locus was located between Xnwafu_6 and Xbarc137 on chromosome arm 1BS. To further isolate the specific region, six Kompetitive allele-specific polymerase chain reaction markers derived from BSR-Seq were developed to delimit Rfk1 within physical intervals of 26.0 Mb. After searching for differentially expressed genes within the candidate interval in the anthers and sequencing analysis, TraesCS1B02G197400LC was identified as a candidate gene for Rfk1 and it was predicted to encode a pectinesterase/pectinesterase inhibitor. Expression analysis also confirmed that it was specifically expressed in the anthers, and its expression level was higher in fertile lines compared with sterile lines. Thus, TraesCS1B02G197400LC was identified as the most likely candidate gene for Rfk1, thereby providing insights into the fertility restoration mechanism for K-type CMS in wheat.


Subject(s)
Cytoplasm/physiology , Gene Expression Regulation, Plant , Genetic Loci , Plant Breeding , Plant Infertility , Plant Proteins/genetics , Triticum/growth & development , Aegilops/physiology , Chromosome Mapping , Triticum/genetics
12.
Plant Dis ; 105(10): 3141-3146, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33616428

ABSTRACT

The isoflavones are a group of plant secondary metabolites primarily synthesized in legumes and are known for their role in improving human health and plant disease resistance. The isoflavones, especially genistein, act as precursors for the production of phytoalexins, which may induce broad-spectrum disease resistance in plants. In this study, we screened transgenic rice lines expressing the isoflavone synthase (GmIFS1) gene from soybean for rice blast (Magnaporthe oryzae) resistance. Two homozygous transgenic lines (I2 and I10), based on single copy gene integration, were identified. The expression of GmIFS1 in transgenic lines was confirmed by quantitative real-time PCR. Genistein was detected in the transgenic lines using liquid chromatography with tandem mass spectrometry. Subsequently, the transgenic lines were evaluated against the rice blast pathogen, isolate YJ54 (race IB-54). The results indicated that >60% of the plants in both the lines (I2 and I10) showed resistance against the blast pathogen. The progenies of one of the resistant transgenic lines (I10) also showed >65% resistance against rice blast. The resistance of these transgenic lines against rice blast may be attributed to the synthesis of isoflavone (genistein) in rice.


Subject(s)
Fabaceae , Magnaporthe , Oryza , Ascomycota , Magnaporthe/genetics , Oryza/genetics , Oxygenases , Plants, Genetically Modified/genetics , Glycine max/genetics
13.
Plant Dis ; 104(3): 717-723, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31935345

ABSTRACT

Magnaporthe oryzae is the causal agent for the devastating disease rice blast. The avirulence (AVR) genes in M. oryzae are required to initiate robust disease resistance mediated by the corresponding resistance (R) genes in rice. Therefore, monitoring pathogen AVR genes is important to predict the stability of R gene-mediated blast resistance. In the present study, we analyzed the DNA sequence dynamics of five AVR genes, namely, AVR-Pita1, AVR-Pik, AVR-Pizt, AVR-Pia, and AVR-Pii, in field isolates of M. oryzae in order to understand the effectiveness of the R genes, Pi-ta, Pi-k, Pi-zt, Pia, and Pii in the Southern U.S. rice growing region. Genomic DNA of 258 blast isolates collected from commercial fields of the Southern UNITED STATES during 1975-2009 were subjected to PCR amplification with AVR gene-specific PCR markers. PCR products were obtained from 232 isolates. The absence of PCR products in the remaining 26 isolates suggests that these isolates do not contain the tested AVR genes. Amplified PCR products were subsequently gel purified and sequenced. Based on the presence or absence of the five AVR genes, 232 field isolates were classified into 10 haplotype groups. The results revealed that 174 isolates of M. oryzae carried AVR-Pita1, 225 isolates carried AVR-Pizt, 44 isolates carried AVR-Pik, 3 isolates carried AVR-Pia, and one isolate carried AVR-Pii. AVR-Pita1 was highly variable, and 40 AVR-Pita1 haplotypes were identified in avirulent isolates. AVR-Pik had four nucleotide sequence site changes resulting in amino acid substitutions, whereas three other AVR genes, AVR-Pizt, AVR-Pia, and AVR-Pii, were relatively stable. Two AVR genes, AVR-Pik and AVR-Pizt, were found to exist in relatively larger proportions of the tested field isolates, which suggested that their corresponding R genes Pi-k and Pi-zt can be deployed in preventing blast disease in the Southern UNITED STATES in addition to Pi-ta. This study demonstrates that continued AVR gene monitoring in the pathogen population is critical for ensuring the effectiveness of deployed blast R genes in commercial rice fields.


Subject(s)
Magnaporthe , Oryza , Disease Resistance , Humans , Surveys and Questionnaires , Virulence
14.
BMC Plant Biol ; 19(1): 252, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31185903

ABSTRACT

BACKGROUND: Thermo-sensitive male-sterility based on Aegilops kotschyi cytoplasm (K-TCMS) plays an important role in hybrid wheat breeding. This has important possible applications in two-line hybrid wheat breeding but the genetic basis and molecular regulation mechanism related to fertility restoration are poorly understood. In this study, comparative transcriptome profiling based on RNA sequencing was conducted for two near-isogenic lines comprising KTM3315R and its sterile counterpart KTM3315A, a total of six samples (3 repetitions per group), in order to identify fertility restoration genes and their metabolic pathways. RESULTS: In total, 2642 significant differentially expressed genes (DEGs) were detected, among which 1238 were down-regulated and 1404 were up-regulated in fertile anthers. Functional annotation enrichment analysis identified important pathways related to fertility restoration, such as carbohydrate metabolism, phenylpropanoid metabolism and biosynthesis, as well as candidate genes encoding pectin methylesterase and flavanone 3-hydroxylase. Moreover, transcription factor analysis showed that a large number of DEGs were mainly involved with the WRKY, bHLH, and MYB transcription factor families. Determination of total soluble sugar and flavonoid contents demonstrated that important metabolic pathways and candidate genes are associated with fertility restoration. Twelve DEGs were selected and detected by quantitative reverse-transcribed PCR, and the results indicated that the transcriptome sequencing results were reliable. CONCLUSIONS: Our results indicate that identified DEGs were related to the fertility restoration and they proved to be crucial in Aegilops kotschyi cytoplasm. These findings also provide a basis for exploring the molecular regulation mechanism associated with wheat fertility restoration as well as screening and cloning related genes.


Subject(s)
Aegilops/genetics , Plant Breeding , Plant Infertility/genetics , Plant Proteins/genetics , Transcriptome , Triticum/genetics , Cytoplasm/physiology , Gene Expression Profiling , Metabolic Networks and Pathways/genetics , Plant Proteins/metabolism , Triticum/physiology
15.
Plant Dis ; 103(1): 132-136, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30444467

ABSTRACT

Rice blast, caused by the fungus Magnaporthe oryzae, is the most damaging disease for rice worldwide. However, the reactions of rice to M. oryzae at different growth stages are largely unknown. In the present study, two temperate japonica rice cultivars, M-202 and Nipponbare, were inoculated synchronously at different vegetative growth stages, V1 to V10. Plants of M-202 at each stage from V1 to reproductive stage R8 were inoculated with M. oryzae race (isolate) IB-49 (ZN61) under controlled conditions. Disease reactions were recorded 7 days postinoculation by measuring the percentage of diseased area of all leaves, excluding the youngest leaf. The results showed that the plants were significantly susceptible at the V1 to V4 stages with a disease severity of 26.7 to 46.8% and disease index of 18.62 to 37.76 for M-202. At the V1 to V2 stages, the plants were significantly susceptible with a disease a severity of 28.6 to 39.3% and disease index of 23.65 to 29.82 for Nipponbare. Similar results were observed when plants of M-202 were inoculated at each growth stage with a disease severity of 29.7 to 60.6% and disease index of 21.93 to 59.25 from V1 to V4. Susceptibility decreased after the V5 stage (severity 4.6% and index 2.17) and became completely resistant at the V9 to V10 stages and after the reproductive stages, suggesting that plants have enhanced disease resistance at later growth stages. These findings are useful for managing rice blast disease in commercial rice production worldwide.


Subject(s)
Magnaporthe , Oryza , Disease Resistance , Humans , Plant Diseases , Plant Leaves
16.
Int J Mol Sci ; 20(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626113

ABSTRACT

Rice foot rot disease caused by the pathogen Dickeya zeae (formerly known as Erwinia chrysanthemi pv. zeae), is a newly emerging damaging bacterial disease in China and the southeast of Asia, resulting in the loss of yield and grain quality. However, the genetic resistance mechanisms mediated by miRNAs to D. zeae are unclear in rice. In the present study, 652 miRNAs including osa-miR396f predicted to be involved in multiple defense responses to D. zeae were identified with RNA sequencing. A total of 79 differentially expressed miRNAs were detected under the criterion of normalized reads ≥10, including 51 known and 28 novel miRNAs. Degradome sequencing identified 799 targets predicted to be cleaved by 168 identified miRNAs. Among them, 29 differentially expressed miRNA and target pairs including miRNA396f-OsGRFs were identified by co-expression analysis. Overexpression of the osa-miR396f precursor in a susceptible rice variety showed enhanced resistance to D. zeae, coupled with significant accumulation of transcripts of osa-miR396f and reduction of its target the Growth-Regulating Factors (OsGRFs). Taken together, these findings suggest that miRNA and targets including miR396f-OsGRFs have a role in resisting the infections by bacteria D. zeae.


Subject(s)
Disease Resistance , MicroRNAs/metabolism , Oryza/genetics , Oryza/microbiology , Pectobacterium/physiology , RNA Stability , RNA, Plant/metabolism , Sequence Analysis, RNA , Gene Expression Regulation, Plant , Gene Library , Gene Ontology , MicroRNAs/chemistry , MicroRNAs/genetics , Nucleic Acid Conformation , RNA Stability/genetics , RNA, Plant/chemistry , RNA, Plant/genetics , Reproducibility of Results
17.
Phytopathology ; 108(9): 1095-1103, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29658844

ABSTRACT

Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait loci (QTLs) were investigated in a recombinant inbred line (RIL) population comprising 243 RILs from a Cybonnet (CYBT) × Saber (SB) cross. CYBT has the R gene Pi-ta and SB has Pi-b. Ten differential isolates of four Magnaporthe oryzae races (IB-1, IB-17, IB-49, and IE-1K) were used to evaluate disease reactions of the 243 RILs under greenhouse conditions. Five resistance QTLs were mapped on chromosomes 2, 3, 8, 9, and 12 with a linkage map of 179 single nucleotide polymorphism markers. Among them, qBR12 (Q1), was mapped at the Pi-ta locus and accounted for 45.41% of phenotypic variation while qBR2 (Q2) was located at the Pi-b locus and accounted for 24.81% of disease reactions. The additive-by-additive epistatic interaction between Q1 (Pi-ta) and Q2 (Pi-b) was detected; they can enhance the disease resistance by an additive 0.93 using the 0 to 9 standard phenotyping method. These results suggest that Pi-ta interacts synergistically with Pi-b.


Subject(s)
Disease Resistance/genetics , Magnaporthe/pathogenicity , Oryza/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Breeding , Chromosome Mapping , Genetic Markers , Oryza/immunology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide/genetics
18.
Int J Mol Sci ; 19(5)2018 May 02.
Article in English | MEDLINE | ID: mdl-29724073

ABSTRACT

A “two-line hybrid system” was developed, previously based on thermo-sensitive cytoplasmic male sterility in Aegilops kotschyi (K-TCMS), which can be used in wheat breeding. The K-TCMS line exhibits complete male sterility and it can be used to produce hybrid wheat seeds during the normal wheat-growing season; it propagates via self-pollination at high temperatures. Isobaric tags for relative and absolute quantification-based quantitative proteome and bioinformatics analyses of the TCMS line KTM3315A were conducted under different fertility conditions to understand the mechanisms of fertility conversion in the pollen development stages. In total, 4639 proteins were identified, the differentially abundant proteins that increased/decreased in plants with differences in fertility were mainly involved with energy metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, protein synthesis, translation, folding, and degradation. Compared with the sterile condition, many of the proteins that related to energy and phenylpropanoid metabolism increased during the anther development stage. Thus, we suggest that energy and phenylpropanoid metabolism pathways are important for fertility conversion in K-TCMS wheat. These findings provide valuable insights into the proteins involved with anther and pollen development, thereby, helping to further understand the mechanism of TCMS in wheat.


Subject(s)
Flowers/metabolism , Plant Proteins/analysis , Pollen/genetics , Proteomics , Thermosensing/genetics , Triticum/growth & development , Cytoplasm , Databases, Protein , Gene Ontology , Plant Infertility/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Poaceae , Pollen/metabolism , Proteome/analysis , Proteome/genetics , Triticum/genetics
19.
Mol Plant Microbe Interact ; 30(10): 803-812, 2017 10.
Article in English | MEDLINE | ID: mdl-28677493

ABSTRACT

Rice blast disease caused by Magnaporthe oryzae is one of the most destructive diseases of rice. Field isolates of M. oryzae rapidly adapt to their hosts and climate. Tracking the genetic and pathogenic variability of field isolates is essential to understand how M. oryzae interacts with hosts and environments. In this study, a total of 1,022 United States field isolates collected from 1959 to 2015 were analyzed for pathogenicity toward eight international rice differentials. A subset of 457 isolates was genotyped with 10 polymorphic simple sequence repeat (SSR) markers. The average polymorphism information content value of markers was 0.55, suggesting that the SSR markers were highly informative to capture the population variances. Six genetic clusters were identified by both STRUCTURE and discriminant analysis of principal components methods. Overall, Nei's diversity of M. oryzae in the United States was 0.53, which is higher than previously reported in a world rice blast collection (0.19). The observed subdivision was associated with collection time periods but not with geographic origin of the isolates. Races such as IC-17, IE-1, and IB-49 have been identified across almost all collection periods and all clusters; races such as IA-1, IB-17, and IH-1 have a much higher frequency in certain periods and clusters. Both genomic and pathogenicity changes of United States blast isolates were associated with collection year, suggesting that hosts are a driving force for the genomic variability of rice blast fungus.


Subject(s)
Oryza/microbiology , Plant Diseases/statistics & numerical data , Discriminant Analysis , Genetic Markers , Genetic Variation , Genotype , Linkage Disequilibrium/genetics , Magnaporthe/genetics , Magnaporthe/pathogenicity , Microsatellite Repeats/genetics , Principal Component Analysis , Reproduction, Asexual , Time Factors , United States , Virulence
20.
Mol Ecol ; 26(12): 3151-3167, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28345200

ABSTRACT

Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), infests and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the 'agricultural weed syndrome', making this an ideal model to study the genetic basis of parallel evolution. Understanding parallel evolution hinges on accurate knowledge of the genetic background and origins of existing weedy rice groups. Using population structure analyses of South Asian and US weedy rice, we show that weeds in South Asia have highly heterogeneous genetic backgrounds, with ancestry contributions both from cultivated varieties (aus and indica) and wild rice. Moreover, the two main groups of weedy rice in the USA, which are also related to aus and indica cultivars, constitute a separate origin from that of Asian weeds. Weedy rice populations in South Asia largely converge on presence of red pericarps and awns and on ease of shattering. Genomewide divergence scans between weed groups from the USA and South Asia, and their crop relatives are enriched for loci involved in metabolic processes. Some candidate genes related to iconic weedy traits and competitiveness are highly divergent between some weed-crop pairs, but are not shared among all weed-crop comparisons. Our results show that weedy rice is an extreme example of recurrent evolution, and suggest that most populations are evolving their weedy traits through different genetic mechanisms.


Subject(s)
Crops, Agricultural/genetics , Evolution, Molecular , Genetics, Population , Oryza/genetics , Plant Weeds/genetics , Asia , DNA, Plant/genetics , Genomics , Sequence Analysis, DNA , United States
SELECTION OF CITATIONS
SEARCH DETAIL