Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38653239

ABSTRACT

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Subject(s)
Akkermansia , Bacteroides , Bile Acids and Salts , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Symbiosis , Animals , Humans , Male , Mice , Akkermansia/metabolism , Bacteroides/metabolism , beta-Lactamases/metabolism , Bile Acids and Salts/metabolism , Biosynthetic Pathways/genetics , Fatty Liver/metabolism , Liver/metabolism , Mice, Inbred C57BL , Verrucomicrobia/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology
2.
Nature ; 610(7932): 562-568, 2022 10.
Article in English | MEDLINE | ID: mdl-36261549

ABSTRACT

Tobacco smoking is positively correlated with non-alcoholic fatty liver disease (NAFLD)1-5, but the underlying mechanism for this association is unclear. Here we report that nicotine accumulates in the intestine during tobacco smoking and activates intestinal AMPKα. We identify the gut bacterium Bacteroides xylanisolvens as an effective nicotine degrader. Colonization of B. xylanisolvens reduces intestinal nicotine concentrations in nicotine-exposed mice, and it improves nicotine-exacerbated NAFLD progression. Mechanistically, AMPKα promotes the phosphorylation of sphingomyelin phosphodiesterase 3 (SMPD3), stabilizing the latter and therefore increasing intestinal ceramide formation, which contributes to NAFLD progression to non-alcoholic steatohepatitis (NASH). Our results establish a role for intestinal nicotine accumulation in NAFLD progression and reveal an endogenous bacterium in the human intestine with the ability to metabolize nicotine. These findings suggest a possible route to reduce tobacco smoking-exacerbated NAFLD progression.


Subject(s)
Bacteria , Intestines , Nicotine , Non-alcoholic Fatty Liver Disease , Tobacco Smoking , Animals , Humans , Mice , Bacteria/drug effects , Bacteria/metabolism , Ceramides/biosynthesis , Nicotine/adverse effects , Nicotine/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/microbiology , Sphingomyelin Phosphodiesterase/metabolism , Tobacco Smoking/adverse effects , Tobacco Smoking/metabolism , Intestines/drug effects , Intestines/microbiology , AMP-Activated Protein Kinases/metabolism , Disease Progression
3.
Nat Chem Biol ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413746

ABSTRACT

Intracellular recognition of lipopolysaccharide (LPS) by mouse caspase-11 or human caspase-4 is a vital event for the activation of the noncanonical inflammasome. Whether negative regulators are involved in intracellular LPS sensing is still elusive. Here we show that adipose triglyceride lipase (ATGL) is a negative regulator of the noncanonical inflammasome. Through screening for genes participating in the noncanonical inflammasome, ATGL is identified as a negative player for intracellular LPS signaling. ATGL binds LPS and catalyzes the removal of the acylated side chains that contain ester bonds. LPS with under-acylated side chains no longer activates the inflammatory caspases. Cells with ATGL deficiency exhibit enhanced immune responses when encountering intracellular LPS, including an elevated secretion of interleukin-1ß, decreased cell viability and increased cell cytotoxicity. Moreover, ATGL-deficient mice show exacerbated responses to endotoxin challenges. Our results uncover that ATGL degrades cytosolic LPS to suppress noncanonical inflammasome activation.

4.
Nature ; 587(7834): 499-504, 2020 11.
Article in English | MEDLINE | ID: mdl-32698187

ABSTRACT

The G-protein-coupled bile acid receptor (GPBAR) conveys the cross-membrane signalling of a vast variety of bile acids and is a signalling hub in the liver-bile acid-microbiota-metabolism axis1-3. Here we report the cryo-electron microscopy structures of GPBAR-Gs complexes stabilized by either the high-affinity P3954 or the semisynthesized bile acid derivative INT-7771,3 at 3 Å resolution. These structures revealed a large oval pocket that contains several polar groups positioned to accommodate the amphipathic cholic core of bile acids, a fingerprint of key residues to recognize diverse bile acids in the orthosteric site, a putative second bile acid-binding site with allosteric properties and structural features that contribute to bias properties. Moreover, GPBAR undertakes an atypical mode of activation and G protein coupling that features a different set of key residues connecting the ligand-binding pocket to the Gs-coupling site, and a specific interaction motif that is localized in intracellular loop 3. Overall, our study not only reveals unique structural features of GPBAR that are involved in bile acid recognition and allosteric effects, but also suggests the presence of distinct connecting mechanisms between the ligand-binding pocket and the G-protein-binding site in the G-protein-coupled receptor superfamily.


Subject(s)
Bile Acids and Salts/metabolism , Cryoelectron Microscopy , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Allosteric Regulation/drug effects , Bile Acids and Salts/chemistry , Binding Sites/drug effects , Cholic Acids/chemistry , Cholic Acids/pharmacology , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , Humans , Ligands , Models, Molecular , Protein Binding , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Substrate Specificity
5.
Proc Natl Acad Sci U S A ; 119(29): e2117054119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858343

ABSTRACT

The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for ß-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-ß-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Cycle Proteins , Lung Neoplasms , Receptors, G-Protein-Coupled , Transcription Factors , Bile Acids and Salts/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/metabolism , Cholic Acids/pharmacology , Cryoelectron Microscopy , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Transcription Factors/metabolism , beta-Arrestin 1/metabolism
6.
J Am Chem Soc ; 146(6): 3974-3983, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38299512

ABSTRACT

Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.


Subject(s)
Biological Products , Galactosamine , Galactosamine/chemistry , Hepatocytes/metabolism , Oligonucleotides, Antisense/chemistry , Disulfides/metabolism , Sulfhydryl Compounds/metabolism , Biological Products/metabolism
7.
Hepatology ; 77(1): 239-255, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35460276

ABSTRACT

BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor α (PPARα) regulates fatty acid transport and catabolism in liver. However, the role of intestinal PPARα in lipid homeostasis is largely unknown. Here, intestinal PPARα was examined for its modulation of obesity and NASH. APPROACH AND RESULTS: Intestinal PPARα was activated and fatty acid-binding protein 1 (FABP1) up-regulated in humans with obesity and high-fat diet (HFD)-fed mice as revealed by using human intestine specimens or HFD/high-fat, high-cholesterol, and high-fructose diet (HFCFD)-fed C57BL/6N mice and PPARA -humanized, peroxisome proliferator response element-luciferase mice. Intestine-specific Ppara or Fabp1 disruption in mice fed a HFD or HFCFD decreased obesity-associated metabolic disorders and NASH. Molecular analyses by luciferase reporter assays and chromatin immunoprecipitation assays in combination with fatty acid uptake assays in primary intestinal organoids revealed that intestinal PPARα induced the expression of FABP1 that in turn mediated the effects of intestinal PPARα in modulating fatty acid uptake. The PPARα antagonist GW6471 improved obesity and NASH, dependent on intestinal PPARα or FABP1. Double-knockout ( Ppara/Fabp1ΔIE ) mice demonstrated that intestinal Ppara disruption failed to further decrease obesity and NASH in the absence of intestinal FABP1. Translationally, GW6471 reduced human PPARA-driven intestinal fatty acid uptake and improved obesity-related metabolic dysfunctions in PPARA -humanized, but not Ppara -null, mice. CONCLUSIONS: Intestinal PPARα signaling promotes NASH progression through regulating dietary fatty acid uptake through modulation of FABP1, which provides a compelling therapeutic target for NASH treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Mice, Knockout , Intestines , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/pharmacology , Fatty Acids/metabolism
8.
Pharmacol Res ; 196: 106930, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37722518

ABSTRACT

Postmenopausal osteoporosis is a common bone metabolic disease, and gut microbiota (GM) imbalance plays an important role in the development of metabolic bone disease. Here, we show that ovariectomized mice had high levels of lipopolysaccharide in serum and gut microbiota dysbiosis through increases in luminal Firmicutes:Bacteroidetes ratio. We depleted the GM through antibiotic treatment and observed improvements in bone mass, bone microstructure, and bone strength in ovariectomized mice. Conversely, transplantation of GM adapted to ovariectomy induced bone loss. However, GM depletion reversed ovariectomy-induced gene expression in the tibia and increased periosteal bone formation. Furthermore, bioinformatics analysis revealed that the G-protein-coupled bile acid receptor (TGR5) and systemic inflammatory factors play key roles in bone metabolism. Silencing TGR5 expression through small interfering RNA (siRNA) in the local tibia and knockout of TGR5 attenuated the effects of GM depletion in ovariectomized mice, confirming these findings. Thus, this study highlights the critical role of the GM in inducing bone loss in ovariectomized mice and suggests that targeting TGR5 within the GM may have therapeutic potential for postmenopausal osteoporosis.


Subject(s)
Gastrointestinal Microbiome , Osteoporosis, Postmenopausal , Humans , Female , Mice , Animals , Osteoporosis, Postmenopausal/drug therapy , Receptors, G-Protein-Coupled/metabolism , Bone Density , Estrogens/therapeutic use
9.
J Mol Cell Cardiol ; 151: 3-14, 2021 02.
Article in English | MEDLINE | ID: mdl-33130149

ABSTRACT

AIMS: The progression of myocardial infarction (MI) involves multiple metabolic disorders. Bile acid metabolites have been increasingly recognized as pleiotropic signaling molecules that regulate multiple cardiovascular functions. G protein-coupled bile acid receptor (TGR5) is one of the receptors sensing bile acids to mediate their biological functions. In this study, we aimed to elucidate the effects of bile acids-TGR5 signaling pathways in myocardial infarction (MI). METHODS AND RESULTS: Blood samples of AMI patients or control subjects were collected and plasma was used for bile acid metabolism analysis. We discovered that bile acid levels were altered and deoxycholic acid (DCA) was substantially reduced in the plasma of AMI patients. Mice underwent either the LAD ligation model of MI or sham operation. Both MI and sham mice were gavaged with 10 mg/kg/d DCA or vehicle control since 3-day before the operation. Cardiac function was assessed by ultrasound echocardiography, infarct area was evaluated by TTC staining and Masson trichrome staining. Administration of DCA improved cardiac function and reduced ischemic injury at the 7th-day post-MI. The effects of DCA were dependent on binding to its receptor TGR5. Tgr5-/- mice underwent the same MI model. Cardiac function deteriorated and infarct size was increased at the 7th-day post-MI, which were not savaged by DCA administration. Moreover, DCA inhibited interleukin (IL)-1ß expression in the infarcted hearts, and ameliorated IL-1ß activation at 1-day post-MI. DCA inhibited NF-κB signaling and further IL-1ß expression in cultured neonatal mouse cardiomyocytes under hypoxia as well as cardio-fibroblasts with the treatment of LPS. CONCLUSIONS: DCA-TGR5 signaling pathway activation decreases inflammation and ameliorates heart function post-infarction. Strategies that control bile acid metabolism and TGR5 signaling to ameliorate the inflammatory responses may provide beneficial effects in patients with myocardial infarction.


Subject(s)
Deoxycholic Acid/metabolism , Inflammation/metabolism , Myocardial Infarction/physiopathology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Anti-Inflammatory Agents/metabolism , Cell Hypoxia , Deoxycholic Acid/blood , Fibroblasts/metabolism , Humans , Inflammation/blood , Male , Mice, Inbred C57BL , Myocardial Infarction/blood , Myocardial Ischemia/blood , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism
10.
Anal Chem ; 92(13): 8810-8818, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32510199

ABSTRACT

The cellular redox balance plays a significant role in cell fate decisions and in the regulation of responses to various kinds of stress. In this study, we defined a novel concept of the oxidative-redox metabolome, and established a method for the simultaneous quantification of 23 metabolites involved in the oxidative-redox metabolome, covering NAD+ pathway, FAD pathway, GSSG pathway, and ATP pathway by using the AB SCIEX 5500 QTRAP LC/MS/MS system. Corresponding oxidative-redox metabolomics analysis was performed in plasma of humans, hamsters and mice, and hamsters were demonstrated to display a stronger resemblance than mice to humans. The known reductant dithiothreitol (DTT) and oxidant hydrogen peroxide (H2O2) were selected to treat A549 and HeLa cells to validate the current method, showing that DTT moderately increased while H2O2 greatly decreased most analytes. Antibiotic treatment may disturb the oxidative-redox balance in vivo. By comparing the oxidative-redox metabolome in antibiotic-fed hamsters with that of control hamsters, we demonstrated a substantial metabolic disparity between the two, further verifying the applicability and reliability of our method.


Subject(s)
Metabolome , Tandem Mass Spectrometry/methods , A549 Cells , Animals , Chromatography, High Pressure Liquid , Cricetinae , Discriminant Analysis , Dithiothreitol/chemistry , Flavin-Adenine Dinucleotide/analysis , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , HeLa Cells , Humans , Hydrogen Peroxide/chemistry , Least-Squares Analysis , Limit of Detection , Mice , NAD/analysis , NAD/chemistry , NAD/metabolism , Oxidation-Reduction
11.
FASEB J ; 33(11): 12780-12799, 2019 11.
Article in English | MEDLINE | ID: mdl-31480861

ABSTRACT

Intercellular communication between lymphocytes plays a fundamental role in numerous immune responses. Previously, we demonstrated that hyperhomocysteinemia (HHcy) induced T cell intracellular glycolytic-lipogenic reprogramming and IFN-γ secretion via pyruvate kinase muscle isozyme 2 (PKM2) to accelerate atherosclerosis. Usually, B cells partially obtain help from T cells in antibody responses. However, whether PKM2 activation in T cells regulates B cell antibody production is unknown. Extracellular vesicles (EVs) are important cellular communication vehicles. Here, we found that PKM2 activator TEPP46-stimulated T-cell-derived EVs promoted B-cell IgG secretion. Conversely, EVs secreted from PKM2-null T cells were internalized into B cells and markedly inhibited B-cell mitochondrial programming, activation, and IgG production. Mechanistically, lipidomics analyses showed that increased ceramides in PKM2-activated T-cell EVs were mainly responsible for enhanced B cell IgG secretion induced by these EVs. Finally, quantum dots (QDs) were packaged with PKM2-null T cell EVs and anti-CD19 antibody to exert B-cell targeting and inhibit IgG production, eventually ameliorating HHcy-accelerated atherosclerosis in vivo. Thus, PKM2-mediated EV ceramides in T cells may be an important cargo for T-cell-regulated B cell IgG production, and QD-CD19-PKM2-null T cell EVs hold high potential to treat B cell overactivation-related diseases.-Yang, J., Dang, G., Lü, S., Liu, H., Ma, X., Han, L., Deng, J., Miao, Y., Li, X., Shao, F., Jiang, C., Xu, Q., Wang, X., Feng, J. T-cell-derived extracellular vesicles regulate B-cell IgG production via pyruvate kinase muscle isozyme 2.


Subject(s)
Antibody Formation , B-Lymphocytes/immunology , Extracellular Vesicles/immunology , Immunoglobulin G/immunology , Pyruvate Kinase/immunology , T-Lymphocytes/immunology , Animals , B-Lymphocytes/pathology , Extracellular Vesicles/pathology , Female , Immune System Diseases/immunology , Immune System Diseases/pathology , Immune System Diseases/therapy , Isoenzymes/immunology , Mice , Mice, Knockout, ApoE , Quantum Dots , T-Lymphocytes/pathology
12.
Acta Pharmacol Sin ; 41(1): 47-55, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31607752

ABSTRACT

T cell metabolic activation plays a crucial role in inflammation of atherosclerosis. Shikonin (SKN), a natural naphthoquinone with anti-inflammatory activity, has shown to exert cardioprotective effects, but the effect of SKN on atherosclerosis is unclear. In addition, SKN was found to inhibit glycolysis via targeting pyruvate kinase muscle isozyme 2 (PKM2). In the present study, we investigated the effects of SKN on hyperhomocysteinemia (HHcy)-accelerated atherosclerosis and T cell inflammatory activation in ApoE-/- mice and the metabolic mechanisms in this process. Drinking water supplemented with Hcy (1.8 g/L) was administered to ApoE-/- mice for 2 weeks and the mice were injected with SKN (1.2 mg/kg, i.p.) or vehicle every 3 days. We showed that SKN treatment markedly attenuated HHcy-accelerated atherosclerosis in ApoE-/- mice and significantly decreased inflammatory activated CD4+ T cells and proinflammatory macrophages in plaques. In splenic CD4+ T cells isolated from HHcy-ApoE-/- mice, SKN treatment significantly inhibited HHcy-stimulated PKM2 activity, interferon-γ secretion and the capacity of these T cells to promote macrophage proinflammatory polarization. SKN treatment significantly inhibited HHcy-stimulated CD4+ T cell glycolysis and oxidative phosphorylation. Metabolic profiling analysis of CD4+ T cells revealed that Hcy administration significantly increased various glucose metabolites as well as lipids and acetyl-CoA carboxylase 1, which were reversed by SKN treatment. In conclusion, our results suggest that SKN is effective to ameliorate atherosclerosis in HHcy-ApoE-/- mice and this is at least partly associated with the inhibition of SKN on CD4+ T cell inflammatory activation via PKM2-dependent metabolic suppression.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Apolipoproteins E/deficiency , Atherosclerosis/drug therapy , Hyperhomocysteinemia/drug therapy , Inflammation/drug therapy , Naphthoquinones/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Dose-Response Relationship, Drug , Female , Hyperhomocysteinemia/metabolism , Inflammation/metabolism , Injections, Intraperitoneal , Mice , Mice, Inbred C57BL , Mice, Knockout , Naphthoquinones/administration & dosage
14.
J Immunol ; 198(1): 170-183, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27903739

ABSTRACT

The overactivation of immune cells plays an important role in the pathogenesis of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis. Homocysteine (Hcy) activates B cell proliferation and Ab secretion; however, the underlying mechanisms for these effects remain largely unknown. Metabolic reprogramming is critical for lymphocyte activation and effector function. In this study, we showed that Hcy-activated B cells displayed an increase in both oxidative phosphorylation and glycolysis, with a tendency to shift toward the latter, as well as an accumulation of intermediates in the pentose phosphate pathway, to provide energy and biosynthetic substrates for cell growth and function. Mechanistically, Hcy increased both the protein expression and glycolytic enzyme activity of the pyruvate kinase muscle isozyme 2 (PKM2) in B cells, whereas the PKM2 inhibitor shikonin restored Hcy-induced metabolic changes, as well as B cell proliferation and Ab secretion both in vivo and in vitro, indicating that PKM2 plays a critical role in metabolic reprogramming in Hcy-activated B cells. Further investigation revealed that the Akt-mechanistic target of rapamycin signaling pathway was involved in this process, as the mechanistic target of rapamycin inhibitor rapamycin inhibited Hcy-induced changes in PKM2 enzyme activity and B cell activation. Notably, shikonin treatment effectively attenuated HHcy-accelerated atherosclerotic lesion formation in apolipoprotein E-deficient mice. In conclusion, our results demonstrate that PKM2 is required to support metabolic reprogramming for Hcy-induced B cell activation and function, and it might serve as a critical regulator in HHcy-accelerated initiation of atherosclerosis.


Subject(s)
B-Lymphocytes/metabolism , Homocysteine/metabolism , Pyruvate Kinase/metabolism , Animals , Atherosclerosis/immunology , B-Lymphocytes/immunology , Chromatography, Liquid , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Knockdown Techniques , Homocysteine/immunology , Hyperhomocysteinemia/immunology , Hyperhomocysteinemia/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Tandem Mass Spectrometry
15.
J Biol Chem ; 291(23): 12336-45, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27080257

ABSTRACT

Hyperhomocysteinemia (HHcy) is a condition characterized by an abnormally high level of homocysteine, an inflammatory factor. This condition has been suggested to promote insulin resistance. To date, the underlying molecular mechanism remains largely unknown, and identifying novel therapeutic targets for HHcy-induced insulin resistance is of high priority. It is well known that intermedin (IMD), a calcitonin family peptide, exerts potent anti-inflammatory effects. In this study, the effects of IMD on HHcy-induced insulin resistance were investigated. Glucose tolerance and insulin tolerance tests were performed on mice treated with IMD by minipump implantation (318 ng/kg/h for 4 weeks) or adipocyte-specific IMD overexpression mice (Adipo-IMD transgenic mice). The expression of genes and proteins related to M1/M2 macrophages and endoplasmic reticulum stress (ERS) was evaluated in adipose tissues or cells. The expression of IMD was identified to be lower in the plasma and adipose tissues of HHcy mice. In both IMD treatment by minipump implantation and Adipo-IMD transgenic mice, IMD reversed HHcy-induced insulin resistance, as revealed by glucose tolerance and insulin tolerance tests. Further mechanistic study revealed that IMD reversed the Hcy-elevated ratio of M1/M2 macrophages by inhibiting AMP-activated protein kinase activity. Adipo-IMD transgenic mice displayed reduced ERS and lower inflammation in adipose tissues with HHcy. Soluble factors from Hcy-treated macrophages induced adipocyte ERS, which was reversed by IMD treatment. These findings revealed that IMD treatment restores the M1/M2 balance, inhibits chronic inflammation in adipose tissues, and improves systemic insulin sensitivity of HHcy mice.


Subject(s)
Hyperhomocysteinemia/physiopathology , Insulin Resistance/physiology , Macrophages, Peritoneal/drug effects , Neuropeptides/pharmacology , AMP-Activated Protein Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Blotting, Western , Cells, Cultured , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/prevention & control , Macrophage Activation/drug effects , Macrophages, Peritoneal/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Neuropeptides/genetics , Neuropeptides/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
16.
J Biol Chem ; 291(45): 23390-23402, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27621315

ABSTRACT

Adrenomedullin 2 (ADM2) is an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family. Our previous studies showed that overexpression of ADM2 in mice reduced obesity and insulin resistance by increasing thermogenesis in brown adipose tissue. However, the effects of ADM2 in another type of thermogenic adipocyte, beige adipocytes, remain to be understood. The plasma ADM2 levels were inversely correlated with obesity in humans, and adipo-ADM2-transgenic (tg) mice displayed resistance to high-fat diet-induced obesity with increased energy expenditure. Beiging of subcutaneous white adipose tissues (WAT) was more noticeably induced in high-fat diet-fed transgenic mice with adipocyte-ADM2 overexpression (adipo-ADM2-tg mice) than in WT animals. ADM2 treatment in primary rat subcutaneous adipocytes induced beiging with up-regulation of UCP1 and beiging-related marker genes and increased mitochondrial uncoupling respiration, which was mainly mediated by activation of the calcitonin receptor-like receptor (CRLR)·receptor activity-modifying protein 1 (RAMP1) complex and PKA and p38 MAPK signaling pathways. Importantly, this adipocyte-autonomous beiging effect by ADM2 was translatable to human primary adipocytes. In addition, M2 macrophage activation also contributed to the beiging effects of ADM2 through catecholamine secretion. Therefore, our study reveals that ADM2 enhances subcutaneous WAT beiging via a direct effect by activating the CRLR·RAMP1-cAMP/PKA and p38 MAPK pathways in white adipocytes and via an indirect effect by stimulating alternative M2 polarization in macrophages. Through both mechanisms, beiging of WAT by ADM2 results in increased energy expenditure and reduced obesity, suggesting ADM2 as a novel anti-obesity target.


Subject(s)
Adipose Tissue, Brown/immunology , Adipose Tissue, White/immunology , Macrophage Activation , Macrophages/immunology , Neuropeptides/immunology , Obesity/immunology , Peptide Hormones/immunology , Adipocytes, White/immunology , Adipocytes, White/pathology , Adipose Tissue, Brown/pathology , Adipose Tissue, White/pathology , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Energy Metabolism , Female , Gene Expression Regulation , Humans , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neuropeptides/genetics , Obesity/etiology , Obesity/genetics , Obesity/pathology , Peptide Hormones/genetics , Rats, Sprague-Dawley , Signal Transduction , Thermogenesis , Up-Regulation
17.
Gastroenterology ; 151(5): 845-859, 2016 11.
Article in English | MEDLINE | ID: mdl-27639801

ABSTRACT

The gut microbiota is associated with metabolic diseases including obesity, insulin resistance, and nonalcoholic fatty liver disease, as shown by correlative studies and by transplant of microbiota from obese humans and mice into germ-free mice. Modification of the microbiota by treatment of high-fat diet (HFD)-fed mice with tempol or antibiotics resulted in decreased adverse metabolic phenotypes. This was owing to lower levels of the genera Lactobacillus and decreased bile salt hydrolase (BSH) activity. The decreased BSH resulted in increased levels of tauro-ß-muricholic acid (MCA), a substrate of BSH and a potent farnesoid X receptor (FXR) antagonist. Mice lacking expression of FXR in the intestine were resistant to HFD-induced obesity, insulin resistance, and nonalcoholic fatty liver disease, thus confirming that intestinal FXR is involved in the potentiation of metabolic disease. A potent intestinal FXR antagonist, glycine-ß-MCA (Gly-MCA), which is resistant to BSH, was developed, which, when administered to HFD-treated mice, mimics the effect of the altered microbiota on HFD-induced metabolic disease. Gly-MCA had similar effects on genetically obese leptin-deficient mice. The decrease in adverse metabolic phenotype by tempol, antibiotics, and Gly-MCA was caused by decreased serum ceramides. Mice lacking FXR in the intestine also have lower serum ceramide levels, and are resistant to HFD-induced metabolic disease, and this was reversed by injection of C16:0 ceramide. In mouse ileum, because of the presence of endogenous FXR agonists produced in the liver, FXR target genes involved in ceramide synthesis are activated and when Gly-MCA is administered they are repressed, which likely accounts for the decrease in serum ceramides. These studies show that ceramides produced in the ileum under control of FXR influence metabolic diseases.


Subject(s)
Gastrointestinal Microbiome/physiology , Metabolic Diseases/etiology , Non-alcoholic Fatty Liver Disease/etiology , Obesity/etiology , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bile Acids and Salts/metabolism , Biomarkers/metabolism , Ceramides/metabolism , Homeostasis , Ileum/metabolism , Insulin Resistance/physiology , Metabolic Diseases/metabolism , Metabolic Diseases/microbiology , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology , Obesity/metabolism , Obesity/microbiology
18.
Hepatology ; 64(1): 92-105, 2016 07.
Article in English | MEDLINE | ID: mdl-26928949

ABSTRACT

UNLABELLED: Hyperhomocysteinemia (HHcy) is associated with liver diseases such as fatty liver and hepatic fibrosis; however, the underlying mechanism is still largely unknown. The current study aimed to explore the signaling pathway involved in HHcy-induced hepatic steatosis (HS). C57BL/6 mice were fed a high-methionine diet (HMD) for 4 and 8 weeks to establish the HHcy mouse model. Compared to a chow diet, the HMD induced hepatic steatosis and elevated hepatic expression of CD36, a fatty acid transport protein. The increased CD36 expression was associated with activation of the aryl hydrocarbon receptor (AHR). In primary cultured hepatocytes, high levels of homocysteine (Hcy) treatment up-regulated CD36 and increased subsequent lipid uptake; both were significantly attenuated by small interfering RNA (siRNA) knockdown of CD36 and AHR. Chromatin immunoprecipitation assay revealed that Hcy promoted binding of AHR to the CD36 promoter, and transient transfection assay demonstrated markedly increased activity of the AHR response element by Hcy, which was ligand dependent. Mass spectrometry revealed significantly increased hepatic content of lipoxin A4 (LXA4 ), a metabolite of arachidonic acid, in HMD-fed mice. Furthermore, overexpression of 15-oxoprostaglandin 13-reductase 1, a LXA4 inactivation enzyme, inhibited Hcy-induced AHR activation, lipid uptake, and lipid accumulation. Moreover, LXA4 -induced up-regulation of CD36 and lipid uptake was inhibited by AHR siRNA in vitro in hepatocytes. Finally, treatment with an AHR antagonist reversed HHcy-induced lipid accumulation by inhibiting the AHR-CD36 pathway in mice. CONCLUSION: HHcy activates the AHR-CD36 pathway by increasing hepatic LXA4 content, which results in hepatic steatosis. (Hepatology 2016;64:92-105).


Subject(s)
CD36 Antigens/metabolism , Fatty Liver/metabolism , Hyperhomocysteinemia/metabolism , Lipid Metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Hepatocytes/metabolism , Lipoxins/metabolism , Liver/metabolism , Male , Methionine , Mice, Inbred C57BL
19.
Dig Dis ; 35(3): 178-184, 2017.
Article in English | MEDLINE | ID: mdl-28249275

ABSTRACT

Farnesoid X receptor (FXR) regulates the synthesis, transport and enterohepatic circulation of bile acids (BA) by modulating the expression of related genes in the liver and small intestine. The composition of the gut microbiota is correlated with metabolic diseases, notably obesity and non-alcoholic fatty acid disease (NAFLD). Recent studies revealed that bacterial metabolism of BA can modulate FXR signaling in the intestine by altering the composition and concentrations of FXR agonist and antagonist. FXR agonist enhances while FXR antagonist suppresses obesity, NAFLD and insulin resistance. The role of intestinal FXR in metabolic disease was firmly established by the analysis of mice lacking FXR that are metabolic resistant to HFD-induced metabolic disease. This is mediated by FXR modulating in part the expression of genes involved in ceramide synthesis in the small intestine. In ileum of obese mice due to the presence of endogenous FXR agonists produced in the liver, these genes are activated, while in mice with altered levels of specific gut bacteria, levels of an FXR antagonist, tauro-ß-muricholic acid (T-ß-MCA) increase and FXR signaling and ceramide synthesis are repressed. T-ß-MCA, which is metabolized in wild-type mice, led to the discovery of glycine-ß-muricholic acid (Gly-MCA) that is stable in the intestine and a potent inhibitor of FXR signaling. These studies reveal that ceramides produced in the ileum under the control of FXR, influence metabolic disease, and suggest that novel FXR antagonist such as Gly-MCA that specifically inhibit intestine FXR, could serve as potential drug for the treatment of metabolic disease.


Subject(s)
Intestinal Mucosa/metabolism , Metabolic Diseases/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Animals , Bacteria/metabolism , Humans , Molecular Targeted Therapy
20.
Acta Pharmacol Sin ; 38(12): 1601-1610, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28933423

ABSTRACT

Hyperhomocysteinemia (HHcy) is a key risk factor in hepatic steatosis. In this study, we applied a metabolomic approach to investigate the changes in the metabolite profile due to HHcy-induced hepatic steatosis and the effects of omega-3 PUFA (polyunsaturated fatty acid) supplementation in mice. HHcy was induced in mice by giving DL-Hcy (1.8 g/L) in drinking water for 6 weeks, then the mice were sacrificed, and the metabolic profiles of the liver and plasma were analyzed through UPLC-ESI-QTOFMS-based lipidomics. Hepatic triglycerides and cholesterol were further assayed. The expression of ceramide metabolism-related genes was measured by quantitative PCR. Compared with control mice, HHcy mice exhibited hepatic steatosis with a notable increase in ceramide-related metabolites and subsequent upregulation of ceramide synthesis genes such as Sptlc3, Degs2, Cer4 and Smpd4. Omega-3 PUFA was simultaneously administered in HHcy mice through chow diet containing 3.3% omega-3 PUFA supplement for 6 weeks, which significantly ameliorated Hcy-induced hepatic steatosis. The decrease in hepatic lipid accumulation was mainly due to reduced hepatic levels of ceramides, which was partly the result of the lower expression of ceramide synthesis genes, Sptlc3 and Degs2. Similar beneficial effects of DHA were observed in Hcy-stimulated primary hepatocytes in vitro. In summary, Hcy-induced ceramide elevation in hepatocytes might contribute to the development of hepatic steatosis. Furthermore, downregulation of ceramide levels through omega-3 PUFA supplementation ameliorates hepatic lipid accumulation. Thus, ceramide is a potential therapeutic target for the treatment of hepatic steatosis.


Subject(s)
Ceramides/biosynthesis , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Fatty Liver/drug therapy , Fatty Liver/etiology , Hepatocytes/drug effects , Hyperhomocysteinemia/complications , Animals , Cells, Cultured , Hepatocytes/metabolism , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL