Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 22(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35957410

ABSTRACT

Machine learning combined with satellite image time series can quickly, and reliably be implemented to map crop distribution and growth monitoring necessary for food security. However, obtaining a large number of field survey samples for classifier training is often time-consuming and costly, which results in the very slow production of crop distribution maps. To overcome this challenge, we propose an ensemble learning approach from the existing historical crop data layer (CDL) to automatically create multitudes of samples according to the rules of spatiotemporal sample selection. Sentinel-2 monthly composite images from 2017 to 2019 for crop distribution mapping in Jilin Province were mosaicked and classified. Classification accuracies of four machine learning algorithms for a single-month and multi-month time series were compared. The results show that deep neural network (DNN) performed the best, followed by random forest (RF), then decision tree (DT), and support vector machine (SVM) the least. Compared with other months, July and August have higher classification accuracy, and the kappa coefficients of 0.78 and 0.79, respectively. Compared with a single phase, the kappa coefficient gradually increases with the growth of the time series, reaching 0.94 in August at the earliest, and then the increase is not obvious, and the highest in the whole growth cycle is 0.95. During the mapping process, time series of different lengths produced different classification results. Wetland types were misclassified as rice. In such cases, authors combined time series of two lengths to correct the misclassified rice types. By comparing with existing products and field points, rice has the highest consistency, followed by corn, whereas soybeans have the least consistency. This shows that the generated sample data set and trained model in this research can meet the crop mapping accuracy and simultaneously reduce the cost of field surveys. For further research, more years and types of crops should be considered for mapping and validation.


Subject(s)
Neural Networks, Computer , Support Vector Machine , Algorithms , Crops, Agricultural , Machine Learning
2.
IEEE Trans Pattern Anal Mach Intell ; 44(11): 7841-7853, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34613909

ABSTRACT

Non-Line-of-Sight (NLOS) imaging reconstructs occluded scenes based on indirect diffuse reflections. The computational complexity and memory consumption of existing NLOS reconstruction algorithms make them challenging to be implemented in real-time. This paper presents a fast and memory-efficient phasor field-diffraction-based NLOS reconstruction algorithm. In the proposed algorithm, the radial property of the Rayleigh Sommerfeld diffraction (RSD) kernels along with the linear property of Fourier transform are utilized to reconstruct the Fourier domain representations of RSD kernels using a set of kernel bases. Moreover, memory consumption is further reduced by sampling the kernel bases in a radius direction and constructing them during the run-time. According to the analysis, the memory efficiency can be improved by as much as 220×. Experimental results show that compared with the original RSD algorithm, the reconstruction time of the proposed algorithm is significantly reduced with little impact on the final imaging quality.

SELECTION OF CITATIONS
SEARCH DETAIL