Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Immunity ; 56(7): 1561-1577.e9, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37402364

ABSTRACT

Hypodermis is the predominant site of Staphylococcus aureus infections that cause cellulitis. Given the importance of macrophages in tissue remodeling, we examined the hypodermal macrophages (HDMs) and their impact on host susceptibility to infection. Bulk and single-cell transcriptomics uncovered HDM subsets with CCR2-dichotomy. HDM homeostasis required the fibroblast-derived growth factor CSF1, ablation of which abrogated HDMs from the hypodermal adventitia. Loss of CCR2- HDMs resulted in accumulation of the extracellular matrix component, hyaluronic acid (HA). HDM-mediated HA clearance required sensing by the HA receptor, LYVE-1. Cell-autonomous IGF1 was required for accessibility of AP-1 transcription factor motifs that controlled LYVE-1 expression. Remarkably, loss of HDMs or IGF1 limited Staphylococcus aureus expansion via HA and conferred protection against cellulitis. Our findings reveal a function for macrophages in the regulation of HA with an impact on infection outcomes, which may be harnessed to limit the establishment of infection in the hypodermal niche.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/physiology , Cellulitis/metabolism , Macrophages/metabolism , Extracellular Matrix
2.
Immunity ; 55(5): 862-878.e8, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35508166

ABSTRACT

Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.


Subject(s)
Macrophage Colony-Stimulating Factor , Mesenchymal Stem Cells , Animals , Bone Marrow , Bone Marrow Cells , Endothelial Cells , Macrophage Colony-Stimulating Factor/pharmacology , Mice , Monocytes
3.
Immunity ; 50(6): 1453-1466.e4, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31053503

ABSTRACT

In lymph nodes, subcapsular sinus macrophages (SSMs) form an immunological barrier that monitors lymph drained from peripheral tissues. Upon infection, SSMs activate B and natural killer T (NKT) cells while secreting inflammatory mediators. Here, we investigated the mechanisms regulating development and homeostasis of SSMs. Embryonic SSMs originated from yolk sac hematopoiesis and were replaced by a postnatal wave of bone marrow (BM)-derived monocytes that proliferated to establish the adult SSM network. The SSM network self-maintained by proliferation with minimal BM contribution. Upon pathogen-induced transient deletion, BM-derived cells contributed to restoring the SSM network. Lymphatic endothelial cells (LECs) were the main source of CSF-1 within the lymph node and conditional deletion of Csf1 in adult LECs decreased the network of SSMs and medullary sinus macrophages (MSMs). Thus, SSMs have a dual hematopoietic origin, and LECs are essential to the niche supporting these macrophages.


Subject(s)
Endothelial Cells/metabolism , Macrophages/metabolism , Animals , Biomarkers , Cell Communication , Cell Differentiation , Gene Expression , Genes, Reporter , Hematopoiesis/genetics , Hematopoiesis/immunology , Homeostasis , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphatic Vessels , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/cytology , Macrophages/immunology , Mice , Monocytes/cytology , Monocytes/metabolism , Yolk Sac
4.
Nature ; 590(7846): 457-462, 2021 02.
Article in English | MEDLINE | ID: mdl-33568812

ABSTRACT

In contrast to nearly all other tissues, the anatomy of cell differentiation in the bone marrow remains unknown. This is owing to a lack of strategies for examining myelopoiesis-the differentiation of myeloid progenitors into a large variety of innate immune cells-in situ in the bone marrow. Such strategies are required to understand differentiation and lineage-commitment decisions, and to define how spatial organizing cues inform tissue function. Here we develop approaches for imaging myelopoiesis in mice, and generate atlases showing the differentiation of granulocytes, monocytes and dendritic cells. The generation of granulocytes and dendritic cells-monocytes localizes to different blood-vessel structures known as sinusoids, and displays lineage-specific spatial and clonal architectures. Acute systemic infection with Listeria monocytogenes induces lineage-specific progenitor clusters to undergo increased self-renewal of progenitors, but the different lineages remain spatially separated. Monocyte-dendritic cell progenitors (MDPs) map with nonclassical monocytes and conventional dendritic cells; these localize to a subset of blood vessels expressing a major regulator of myelopoiesis, colony-stimulating factor 1 (CSF1, also known as M-CSF)1. Specific deletion of Csf1 in endothelium disrupts the architecture around MDPs and their localization to sinusoids. Subsequently, there are fewer MDPs and their ability to differentiate is reduced, leading to a loss of nonclassical monocytes and dendritic cells during both homeostasis and infection. These data indicate that local cues produced by distinct blood vessels are responsible for the spatial organization of definitive blood cell differentiation.


Subject(s)
Cell Tracking/methods , Myeloid Cells/cytology , Myelopoiesis , Staining and Labeling/methods , Animals , Atlases as Topic , Blood Vessels/cytology , Blood Vessels/metabolism , Cell Lineage , Cell Self Renewal , Dendritic Cells/cytology , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Female , Granulocytes/cytology , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Macrophage Colony-Stimulating Factor/deficiency , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Monocytes/cytology , Myeloid Cells/metabolism
5.
Nature ; 586(7829): 417-423, 2020 10.
Article in English | MEDLINE | ID: mdl-32999463

ABSTRACT

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Subject(s)
Feedback, Physiological , Microglia/physiology , Neural Inhibition , Neurons/physiology , 5'-Nucleotidase/metabolism , Action Potentials , Adenosine/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Antigens, CD/metabolism , Apyrase/metabolism , Calcium/metabolism , Corpus Striatum/cytology , Corpus Striatum/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Neural Inhibition/genetics , Receptor, Adenosine A1/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Time Factors
6.
J Biol Chem ; 299(3): 102965, 2023 03.
Article in English | MEDLINE | ID: mdl-36736424

ABSTRACT

Connexin (Cx)-forming channels play essential roles in maintaining lens homeostasis and transparency. We showed here channel-independent roles of Cx50 in cell-cell adhesion and confirmed the second extracellular (E2) domain as a critical domain for cell adhesion function. We found that cell adhesion decreased in cells expressing chimeric Cx50 in which the E2 domain was swapped with the E2 domain of either Cx43 or Cx46. In contrast, adhesion increased in cells expressing chimeric Cx43 and Cx46 with the Cx50 (E2) domain. This function is Cx channel-independent and Cx50 E2 domain-dependent cell adhesion acting in both homotypic and heterotypic manners. In addition, we generated eight site mutations of unique residues between Cx50 and the other two lens Cxs and found that mutation of any one of the residues abolished the adhesive function. Moreover, expression of adhesive-impaired mutants decreased adhesion-related proteins, N-cadherin and ß-catenin. Expression of the adhesion-impaired Cx50W188P mutant in embryonic chick lens caused enlarged extracellular spaces, distorted fiber organization, delayed nuclear condensation, and cortical cataracts. In summary, the results from both in vitro and in vivo studies demonstrate the importance of the adhesive function of Cx50 in the lens.


Subject(s)
Cell Adhesion , Connexins , Lens, Crystalline , Cell Adhesion Molecules/metabolism , Cell Differentiation , Connexins/metabolism , Eye Proteins/metabolism , Gap Junctions/metabolism , Lens, Crystalline/metabolism , Cadherins/metabolism
7.
J Allergy Clin Immunol ; 148(3): 799-812.e10, 2021 09.
Article in English | MEDLINE | ID: mdl-33662369

ABSTRACT

BACKGROUND: The type 2 cytokines IL-4 and IL-13 promote not only atopic dermatitis (AD) but also the resolution of inflammation. How type 2 cytokines participate in the resolution of AD is poorly known. OBJECTIVE: Our aim was to determine the mechanisms and cell types governing skin inflammation, barrier dysfunction, and resolution of inflammation in a model of AD. METHODS: Mice that exhibit expression of IL-4, IL-13, and MCPT8 or that could be depleted of basophils or eosinophils, be deficient in IL-4 or MHC class II molecules, or have basophils lacking macrophage colony-stimulating factor (M-CSF) were treated with calcipotriol (MC903) as an acute model of AD. Kinetics of the disease; keratinocyte differentiation; and leukocyte accumulation, phenotype, function, and cytokine production were measured by transepidermal water loss, histopathology, molecular biology, or unbiased analysis of spectral flow cytometry. RESULTS: In this model of AD, basophils were activated systemically and were the initial and main source of IL-4 in the skin. Basophils and IL-4 promoted epidermal hyperplasia and skin barrier dysfunction by acting on keratinocyte differentiation during inflammation. Basophils, IL-4, and basophil-derived M-CSF inhibited the accumulation of proinflammatory cells in the skin while promoting the expansion and function of proresolution M2-like macrophages and the expression of probarrier genes. Basophils kept their proresolution properties during AD resolution. CONCLUSION: Basophils can display both beneficial and detrimental type 2 functions simultaneously during atopic inflammation.


Subject(s)
Basophils/immunology , Dermatitis, Atopic/immunology , Skin/immunology , Animals , Calcitriol/analogs & derivatives , Cell Differentiation , Cytokines/genetics , Cytokines/immunology , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Diphtheria Toxin , Edema/chemically induced , Edema/immunology , Eosinophils/immunology , Female , Gene Expression , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Hyperplasia/immunology , Keratinocytes/cytology , Male , Mice, Inbred C57BL , Mice, Transgenic , Skin/pathology
8.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362291

ABSTRACT

Osteoporosis and sarcopenia (termed "Osteosarcopenia"), the twin-aging diseases, are major contributors to reduced bone mass and muscle weakness in the elderly population. Connexin 43 (Cx43) in osteocytes has been previously reported to play vital roles in bone homeostasis and muscle function in mature mice. The Cx43-formed gap junctions (GJs) and hemichannels (HCs) in osteocytes are important portals for the exchange of small molecules in cell-to-cell and cell-to-extracellular matrix, respectively. However, the roles of Cx43-based GJs and HCs in both bone and muscle aging are still unclear. Here, we used two transgenic mouse models with overexpression of the dominant negative Cx43 mutants primarily in osteocytes driven by the 10-kb Dmp1 promoter, R76W mice (inhibited gap junctions but enhanced hemichannels) and Δ130-136 mice (both gap junction and hemichannels are inhibited), to determine the actions of Cx43-based hemichannels (HCs) and gap junctions (GJs) in the regulation of bone and skeletal muscle from aged mice (18 months) as compared with those from adult mice (10 months). We demonstrated that enhancement of Cx43 HCs reduces bone mass due to increased osteoclast surfaces while the impairment of Cx43 HCs increases osteocyte apoptosis in aged mice caused by reduced PGE2 levels. Furthermore, altered mitochondrial homeostasis with reduced expression of Sirt-1, OPA-1, and Drp-1 resulted in excessive ROS level in muscle soleus (SL) of aged transgenic mice. In vitro, the impairment of Cx43 HCs in osteocytes from aged mice also promoted muscle collagen synthesis through activation of TGFß/smad2/3 signaling because of reduced PGE2 levels in the PO CM. These findings indicate that the enhancement of Cx43 HCs while GJs are inhibited reduces bone mass, and the impairment of Cx43 HCs inhibits PGE2 level in osteocytes and this reduction promotes muscle collagen synthesis in skeletal muscle through activation of TGFß/smad2/3 signaling, which together with increased ROS level contributes to reduced muscle force in aged mice.


Subject(s)
Connexin 43 , Osteocytes , Animals , Male , Mice , Collagen/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Dinoprostone/metabolism , Gap Junctions/metabolism , Mice, Transgenic , Muscle, Skeletal/metabolism , Osteocytes/metabolism , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta/metabolism
9.
Curr Osteoporos Rep ; 19(1): 66-74, 2021 02.
Article in English | MEDLINE | ID: mdl-33403446

ABSTRACT

PURPOSE OF REVIEW: The goal of this review is to provide an overview of the impact and underlying mechanism of oxidative stress on connexin channel function, and their roles in skeletal aging, estrogen deficiency, and glucocorticoid excess associated bone loss. RECENT FINDINGS: Connexin hemichannel opening is increased under oxidative stress conditions, which confers a cell protective role against oxidative stress-induced cell death. Oxidative stress acts as a key contributor to aging, estrogen deficiency, and glucocorticoid excess-induced osteoporosis and impairs osteocytic network and connexin gap junction communication. This paper reviews the current knowledge for the role of oxidative stress and connexin channels in the pathogenesis of osteoporosis and physiological and pathological responses of connexin channels to oxidative stress. Oxidative stress decreases osteocyte viability and impairs the balance of anabolic and catabolic responses. Connexin 43 (Cx43) channels play a critical role in bone remodeling, mechanotransduction, and survival of osteocytes. Under oxidative stress conditions, there is a consistent reduction of Cx43 expression, while the opening of Cx43 hemichannels protects osteocytes against cell injury caused by oxidative stress.


Subject(s)
Aging/pathology , Aging/physiology , Connexins/physiology , Gap Junctions/physiology , Osteoporosis/pathology , Oxidative Stress , Bone Remodeling/physiology , Estrogens/deficiency , Glucocorticoids/adverse effects , Humans , Mechanotransduction, Cellular/physiology , Osteoporosis/chemically induced , Osteoporosis/prevention & control
10.
J Cell Sci ; 131(6)2018 03 21.
Article in English | MEDLINE | ID: mdl-29487175

ABSTRACT

Elevated oxidized stress contributes to lens cataracts, and gap junctions play important roles in maintaining lens transparency. As well as forming gap junctions, connexin (Cx) proteins also form hemichannels. Here, we report a new mechanism whereby hemichannels mediate transport of reductant glutathione into lens fiber cells and protect cells against oxidative stress. We found that Cx50 (also known as GJA8) hemichannels opened in response to H2O2 in lens fiber cells but that transport through the channels was inhibited by two dominant-negative mutants in Cx50, Cx50P88S, which inhibits transport through both gap junctions and hemichannels, and Cx50H156N, which only inhibits transport through hemichannels and not gap junctions. Treatment with H2O2 increased the number of fiber cells undergoing apoptosis, and this increase was augmented with dominant-negative mutants that disrupted both hemichannels formed from Cx46 (also known as GJA3) and Cx50, while Cx50E48K, which only impairs gap junctions, did not have such an effect. Moreover, hemichannels mediate uptake of glutathione, and this uptake protected lens fiber cells against oxidative stress, while hemichannels with impaired transport had less protective benefit from glutathione. Taken together, these results show that oxidative stress activates connexin hemichannels in the lens fiber cells and that hemichannels likely protect lens cell against oxidative damage through transporting extracellular reductants.


Subject(s)
Cataract/metabolism , Connexins/metabolism , Glutathione/metabolism , Lens, Crystalline/metabolism , Oxidative Stress , Animals , Biological Transport/drug effects , Cataract/genetics , Chickens , Connexins/genetics , Humans , Hydrogen Peroxide/pharmacology , Lens, Crystalline/drug effects , Oxidative Stress/drug effects
11.
Int J Mol Sci ; 21(21)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147690

ABSTRACT

Connexins are the structural components of gap junctions and hemichannels that mediate the communication and exchange of small molecules between cells, and between the intracellular and extracellular environment, respectively. Connexin (Cx) 46 is predominately expressed in lens fiber cells, where they function in maintaining the homeostasis and transparency of the lens. Cx46 mutations are associated with impairment of channel function, which results in the development of congenital cataracts. Cx46 gap junctions and hemichannels are closely regulated by multiple mechanisms. Key regulators of Cx46 channel function include Ca2+ and calmodulin (CaM). Ca2+ plays an essential role in lens homeostasis, and its dysregulation causes cataracts. Ca2+ associated CaM is a well-established inhibitor of gap junction coupling. Recent studies suggest that elevated intracellular Ca2+ activates Cx hemichannels in lens fiber cells and Cx46 directly interacts with CaM. A Cx46 site mutation (Cx46-G143R), which is associated with congenital Coppock cataracts, shows an increased Cx46-CaM interaction and this interaction is insensitive to Ca2+, given that depletion of Ca2+ reduces the interaction between CaM and wild-type Cx46. Moreover, inhibition of CaM function greatly reduces the hemichannel activity in the Cx46 G143R mutant. These research findings suggest a new regulatory mechanism by which enhanced association of Cx46 with CaM leads to the increase in hemichannel activity and dysregulation may lead to cataract development. In this review, we will first discuss the involvement of Ca2+/CaM in lens homeostasis and pathology, and follow by providing a general overview of Ca2+/CaM in the regulation of Cx46 gap junctions. We discuss the most recent studies concerning the molecular mechanism of Ca2+/CaM in regulating Cx46 hemichannels. Finally, we will offer perspectives of the impacts of Ca2+/CaM and dysregulation on Cx46 channels and vice versa.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Calmodulin/metabolism , Connexins/metabolism , Gap Junctions/metabolism , Lens, Crystalline/metabolism , Animals , Gene Expression Regulation , Homeostasis , Humans , Mutation , Protein Structure, Secondary
12.
Int J Mol Sci ; 21(3)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050469

ABSTRACT

The skeleton adapts to mechanical loading to promote bone formation and remodeling. While most bone cells are involved in mechanosensing, it is well accepted that osteocytes are the principal mechanosensory cells. The osteocyte cell body and processes are surrounded by a fluid-filled space, forming an extensive lacuno-canalicular network. The flow of interstitial fluid is a major stress-related factor that transmits mechanical stimulation to bone cells. The long dendritic processes of osteocytes form a gap junction channel network connecting not only neighboring osteocytes, but also cells on the bone surface, such as osteoblasts and osteoclasts. Mechanosensitive osteocytes also form hemichannels that mediate the communication between the cytoplasmic and extracellular microenvironment. This paper will discuss recent research progress regarding connexin (Cx)-forming gap junctions and hemichannels in osteocytes, osteoblasts, and other bone cells, including those richly expressing Cx43. We will then cover the recent progress regarding the regulation of these channels by mechanical loading and the role of integrins and signals in mediating Cx43 channels, and bone cell function and viability. Finally, we will summarize the recent studies regarding bone responses to mechanical unloading in Cx43 transgenic mouse models. The osteocyte has been perceived as the center of bone remodeling, and connexin channels enriched in osteocytes are a likely major player in meditating the function of bone. Based on numerous studies, connexin channels may present as a potential new therapeutic target in the treatment of bone loss and osteoporosis. This review will primarily focus on Cx43, with some discussion in other connexins expressed in bone cells.


Subject(s)
Bone Remodeling , Bone and Bones/physiology , Connexins/metabolism , Animals , Biomechanical Phenomena , Connexin 43/metabolism , Gap Junctions/metabolism , Homeostasis , Humans , Mechanotransduction, Cellular , Osteocytes/metabolism , Stress, Mechanical , Weight-Bearing
13.
J Biol Chem ; 293(7): 2573-2585, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29298900

ABSTRACT

Connexin channels help maintain eye lens homeostasis and transparency. The G143R missense substitution in connexin (Cx) 46 is associated with congenital Coppock cataracts; however, the underlying molecular mechanism is largely unknown. Here, we report that compared with WT Cx46, the G143R substitution abolishes hemichannel conductance in Xenopus oocytes and in HeLa cells. Moreover, this substitution is dominant-negative and inhibits conductance of WT Cx46. CD analysis indicated that the substitution greatly reduces the α-helical structure of the intracellular Cx46 loop domain. Protein pulldown assays and isothermal titration calorimetry revealed that this Cx46 domain directly interacts with calmodulin (CaM) in a Ca2+-dependent fashion, an observation confirmed by immunofluorescent co-localization of Cx46 with CaM. Interestingly, the G143R substitution enhanced the Cx46-CaM interaction and attenuated its abolishment by Ca2+ depletion. Moreover, Cx46 increased dye influx, and the G143R substitution augmented this effect. Inhibition of Ca2+-mediated CaM activation blocked hemichannel permeability. The membrane potential plays a crucial role in Cx46 membrane permeability. We found that the activity of hemichannels is detectable under rest and hyperpolarization conditions but is eliminated with depolarization. These results suggested that the G143R substitution impairs voltage-dependent electrical conductance and alters membrane permeability mediated by Cx46 hemichannels. The latter likely is caused by the substitution-induced structural changes of the intracellular loop domain associated with the increased interaction with CaM and reduced Ca2+ sensitivity. The data suggest that the G143R-induced enhancement of the CaM-Cx46 interaction results in altered hemichannel activities and might be related to cataract formation.


Subject(s)
Calmodulin/metabolism , Cataract/genetics , Connexins/genetics , Mutation, Missense , Animals , Calcium/metabolism , Calmodulin/chemistry , Calmodulin/genetics , Cataract/congenital , Cataract/metabolism , Connexins/chemistry , Connexins/metabolism , Female , Gap Junctions/metabolism , HeLa Cells , Humans , Lens, Crystalline/metabolism , Membrane Potentials , Oocytes/chemistry , Oocytes/metabolism , Protein Binding , Protein Domains , Xenopus
14.
J Cell Physiol ; 234(11): 19824-19832, 2019 11.
Article in English | MEDLINE | ID: mdl-30980397

ABSTRACT

The cross-talk between cells is very critical for moving forward fracture healing in an orderly manner. Connexin (Cx) 43-formed gap junctions and hemichannels mediate the communication between adjacent cells and cells and extracellular environment. Loss of Cx43 in osteoblasts/osteocytes results in delayed fracture healing. For investigating the role of two channels in osteocytes in bone repair, two transgenic mouse models with Cx43 dominant negative mutants driven by a 10 kb-DMP1 promoter were generated: R76W (gap junctions are blocked, whereas hemichannels are promoted) and Δ130-136 (both gap junctions and hemichannels are blocked). R76W mice (promotion of hemichannels) showed a significant increase of new bone formation, whereas delayed osteoclastogenesis and healing was observed in Δ130-136 (impairment of gap junctions), but not in R76W mice (hemichannel promotion may recover the delay). These results suggest that gap junctions and hemichannels play some similar and cooperative roles in bone repair.


Subject(s)
Connexin 43/metabolism , Fracture Healing , Osteocytes/metabolism , Animals , Bony Callus/pathology , Cartilage/pathology , Gap Junctions/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Osteogenesis
15.
J Cell Biochem ; 120(9): 14262-14273, 2019 09.
Article in English | MEDLINE | ID: mdl-31106446

ABSTRACT

The nature of muscle-bone crosstalk has been historically considered to be only mechanical, where the muscle is the load applier while bone provides the attachment sites. However, this dogma has been challenged with the emerging notion that bone and muscle act as secretory endocrine organs affect the function of each other. Biochemical crosstalk occurs through myokines such as myostatin, irisin, interleukin (IL)-6, IL-7, IL-15, insulin-like growth factor-1, fibroblast growth factor (FGF)-2, and ß-aminoisobutyric acid and through bone-derived factors including FGF23, prostaglandin E2 , transforming growth factor ß, osteocalcin, and sclerostin. Aside from the biochemical and mechanical interaction, additional factors including aging, circadian rhythm, nervous system network, nutrition intake, and exosomes also have effects on bone-muscle crosstalk. Here, we summarize the current research progress in the area, which may be conductive to identify potential novel therapies for the osteoporosis and sarcopenia, especially when they develop in parallel.


Subject(s)
Bone and Bones/physiology , Muscle, Skeletal/physiology , Nervous System Physiological Phenomena , Signal Transduction , Aging/physiology , Bone and Bones/innervation , Bone and Bones/metabolism , Circadian Rhythm/physiology , Fibroblast Growth Factor-23 , Humans , Muscle Proteins/metabolism , Muscle, Skeletal/innervation , Muscle, Skeletal/metabolism , Osteocalcin/metabolism , Protein Binding
16.
Exp Cell Res ; 367(2): 150-161, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29596891

ABSTRACT

Fibroblasts are the most abundant connective tissue cells and play an important role in wound healing. It is possible that faster and scarless wound healing in oral mucosal gingiva relative to skin may relate to the distinct phenotype of the fibroblasts residing in these tissues. Connexin 43 (Cx43) is the most ubiquitous Cx in skin (SFBLs) and gingival fibroblasts (GFBLs), and assembles into hemichannels (HCs) and gap junctions (GJs) on the cell membrane. We hypothesized that SFBLs and GFBLs display distinct expression or function of Cx43, and that this may partly underlie the different wound healing outcomes in skin and gingiva. Here we show that Cx43 distinctly formed Cx43 GJs and HCs in human skin and gingiva in vivo. However, in SFBLs, in contrast to GFBLs, only a small proportion of total Cx43 assembled into HC plaques. Using an in vivo-like 3D culture model, we further show that the GJ, HC, and channel-independent functions of Cx43 distinctly regulated wound healing-related gene expression in GFBLs and SFBLs. Therefore, the distinct wound healing outcomes in skin and gingiva may partly relate to the inherently different assembly and function of Cx43 in the resident fibroblasts.


Subject(s)
Connexin 43/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , Gingiva/metabolism , Skin/metabolism , Wound Healing/genetics , Adult , Animals , Cells, Cultured , Female , Gap Junctions/metabolism , Gingiva/cytology , Humans , Intercellular Junctions/metabolism , Male , Middle Aged , Skin/cytology , Swine
17.
Cell Mol Life Sci ; 75(11): 2059-2073, 2018 06.
Article in English | MEDLINE | ID: mdl-29218600

ABSTRACT

Connexin 43 (Cx43) hemichannels establish local signaling networks via the release of ATP and other molecules, but their excessive opening may result in cell death. Hence, the activity of Cx43-hemichannels ought to be critically controlled. This involves interactions between the C-terminal tail (CT) and the cytoplasmic loop (CL), more particularly the L2 domain within CL. Previous work revealed an important role for the last nine amino acids of the Cx43 CT by targeting the L2 domain, as these nine amino acids were sufficient to restore the activity of CT-truncated Cx43-hemichannels. However, we discovered that deletion of the last 19 amino acids of the CT only partially lowered the binding to the L2 domain, indicating that a second L2-binding region is present in the CT. We here provide evidence that the SH3-binding domain is another CT region that targets the L2 domain. At the functional level, the SH3-binding domain was able to restore the activity of CT-truncated Cx43-hemichannels and alleviate the inhibition of full-length Cx43-hemichannels by high intracellular Ca2+ concentration ([Ca2+]i) as demonstrated by various approaches including patch clamp studies of unitary Cx43-hemichannel activity. Finally, we show that in full-length Cx43-hemichannels, deletion of either the SH3-binding domain or the CT9 region suppresses the hemichannel activity, while deletion of both domains completely annihilates the hemichannel activity. These results demonstrate that the Cx43 SH3-binding domain, in addition to the CT9 region, critically controls hemichannel activity at high [Ca2+]i, which may be involved in pathological hemichannel opening.


Subject(s)
Connexin 43/metabolism , src Homology Domains , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Binding Sites , Calcium/metabolism , Cattle , Cells, Cultured , Connexin 43/chemistry , HeLa Cells , Humans , Protein Binding , Protein Interaction Domains and Motifs
18.
J Bone Miner Metab ; 36(5): 529-536, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29027016

ABSTRACT

This study constructed an in situ cell culture, real-time observation system based originally on a microfluidic channel, and reported the morphological changes of late osteoblast-like IDG-SW3 cells in response to flow shear stress (FSS). The effects of high (1.2 Pa) and low (0.3 Pa) magnitudes of unidirectional FSS and three concentrations of extracellular Type I collagen (0.1, 0.5, and 1 mg/mL) coating on cell morphology were investigated. IDG-SW3 cells were cultured in polydimethylsiloxane microfluidic channels. Cell images were recorded real-time under microscope at intervals of 1 min. Cell morphology was characterized by five parameters: cellular area, cell elongation index, cellular alignment, cellular process length, and number of cellular process per cell. Immunofluorescence assay was used to detect stress fiber distribution and vinculin expression. The results showed that 1.2 Pa, but not 0.3 Pa of FSS induced a significant morphological change in late osteoblast-like IDG-SW3 cells, which may be caused by the alteration of cellular adhesion with matrix in response to FSS. Moreover, the amount of collagen matrix, alignment of fiber stress and expression of vinculin were closely correlated with the morphological changes of IDG-SW3 cells. This study suggests that osteoblasts are very responsive to the magnitudes of FSS, and extracellular collagen matrix and focal adhesion are directly involved in the morphological changes adaptive to FSS.


Subject(s)
Osteoblasts/cytology , Rheology , Stress, Mechanical , Actins/metabolism , Animals , Cell Proliferation , Cell Shape , Cells, Cultured , Collagen Type I/metabolism , Extracellular Matrix/metabolism , Mice , Osteoblasts/metabolism , Rats , Vinculin/metabolism
19.
Int J Mol Sci ; 19(6)2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29865195

ABSTRACT

Since their characterization more than five decades ago, gap junctions and their structural proteins-the connexins-have been associated with cancer cell growth. During that period, the accumulation of data and molecular knowledge about this association revealed an apparent contradictory relationship between them and cancer. It appeared that if gap junctions or connexins can down regulate cancer cell growth they can be also implied in the migration, invasion and metastatic dissemination of cancer cells. Interestingly, in all these situations, connexins seem to be involved through various mechanisms in which they can act either as gap-junctional intercellular communication mediators, modulators of signalling pathways through their interactome, or as hemichannels, which mediate autocrine/paracrine communication. This complex involvement of connexins in cancer progression is even more complicated by the fact that their hemichannel function may overlap with other gap junction-related proteins, the pannexins. Despite this complexity, the possible involvements of connexins and pannexins in cancer progression and the elucidation of the mechanisms they control may lead to use them as new targets to control cancer progression. In this review, the involvements of connexins and pannexins in these different topics (cancer cell growth, invasion/metastasis process, possible cancer therapeutic targets) are discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinogenesis , Connexins/metabolism , Neoplasm Metastasis , Neoplasms/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Communication , Connexins/antagonists & inhibitors , Connexins/physiology , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction
20.
Biochem J ; 473(22): 4227-4242, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27655909

ABSTRACT

SNAT1 is a system N/A neutral amino acid transporter that primarily expresses in neurons and mediates the transport of l-glutamine (Gln). Gln is an important amino acid involved in multiple cellular functions and also is a precursor for neurotransmitters, glutamate and GABA. In the present study, we demonstrated that SNAT1 is an N-glycoprotein expressed in neurons. We identified three glycosylation sites at asparagine residues 251, 257 and 310 in SNAT1 protein, and that the first two are the primary sites. The biotinylation and confocal immunofluorescence analysis showed that the glycosylation-impaired mutants and deglycosylated SNAT1 were equally capable of expressing on the cell surface. However, l-Gln and 3H-labeled methyl amino isobutyrate (MeAIB) was significantly compromised in N-glycosylation-impaired mutants and deglycosylated SNAT1 when compared with the wild-type control. Taken together, these results suggest that SNAT1 is an N-glycosylated protein with three de novo glycosylation sites and N-glycosylation of SNAT1 may play an important role in the transport of substrates across the cell membrane.


Subject(s)
Amino Acid Transport System A/chemistry , Amino Acid Transport System A/metabolism , Animals , Asparagine/chemistry , Asparagine/metabolism , Blotting, Western , Brain/drug effects , Brain/metabolism , CHO Cells , Cricetulus , Fluorescent Antibody Technique , Glycosylation , Microscopy, Confocal , Neurons/drug effects , Neurons/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Protein Transport , Tunicamycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL