Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
BMC Anesthesiol ; 24(1): 77, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408913

ABSTRACT

BACKGROUND: Extensive metastatic and refractory cancer pain is common, and exhibits a dissatisfactory response to the conventional intrathecal infusion of opioid analgesics. CASE PRESENTATION: The present study reports a case of an extensive metastatic esophageal cancer patient with severe intractable pain, who underwent translumbar subarachnoid puncture with intrathecal catheterization to the prepontine cistern. After continuous infusion of low-dose morphine, the pain was well-controlled with a decrease in the numeric rating scale (NRS) of pain score from 9 to 0, and the few adverse reactions to the treatment disappeared at a low dose of morphine. CONCLUSIONS: The patient achieved a good quality of life during the one-month follow-up period.


Subject(s)
Cancer Pain , Neoplasms , Pain, Intractable , Humans , Morphine , Pain, Intractable/etiology , Pain, Intractable/chemically induced , Cancer Pain/drug therapy , Quality of Life , Analgesics, Opioid , Injections, Spinal/adverse effects
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 34-43, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38151998

ABSTRACT

Cisplatin resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). p32 and OPA1 are the key regulators of mitochondrial morphology and function. This study aims to investigate the role of the p32/OPA1 axis in cisplatin resistance in NSCLC and its underlying mechanism. The levels of p32 protein and mitochondrial fusion protein OPA1 are higher in cisplatin-resistant A549/DDP cells than in cisplatin-sensitive A549 cells, which facilitates mitochondrial fusion in A549/DDP cells. In addition, the expression of p32 and OPA1 protein is also upregulated in A549 cells during the development of cisplatin resistance. Moreover, p32 knockdown effectively downregulates the expression of OPA1, stimulates mitochondrial fission, decreases ATP generation and sensitizes A549/DDP cells to cisplatin-induced apoptosis. Furthermore, metformin significantly downregulates the expressions of p32 and OPA1 and induces mitochondrial fission and a decrease in ATP level in A549/DDP cells. The co-administration of metformin and cisplatin shows a significantly greater decrease in A549/DDP cell viability than cisplatin treatment alone. Moreover, D-erythro-Sphingosine, a potent p32 kinase activator, counteracts the metformin-induced downregulation of OPA1 and mitochondrial fission in A549/DDP cells. Taken together, these findings indicate that p32/OPA1 axis-mediated mitochondrial dynamics contributes to the acquired cisplatin resistance in NSCLC and that metformin resensitizes NSCLC to cisplatin, suggesting that targeting p32 and mitochondrial dynamics is an effective strategy for the prevention of cisplatin resistance.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metformin , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Mitochondrial Dynamics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Apoptosis , A549 Cells , Proteins , Metformin/pharmacology , Adenosine Triphosphate , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , GTP Phosphohydrolases/genetics
3.
Chemistry ; 29(1): e202202002, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36161734

ABSTRACT

Microbial fuel cell (MFC) is a promising approach that could utilize microorganisms to oxidize biodegradable pollutants in wastewater and generate electrical power simultaneously. Introducing advanced anode nanomaterials is generally considered as an effective way to enhance MFC performance by increasing bacterial adhesion and facilitating extracellular electron transfer (EET). This review focuses on the key advances of recent anode modification materials, as well as the current understanding of the microbial EET process occurring at the bacteria-electrode interface. Based on the difference in combination mode of the exoelectrogens and nanomaterials, anode surface modification, hybrid biofilm construction and single-bacterial surface modification strategies are elucidated exhaustively. The inherent mechanisms may help to break through the performance output bottleneck of MFCs by rational design of EET-related nanomaterials, and lead to the widespread application of microbial electrochemical systems.


Subject(s)
Bioelectric Energy Sources , Nanostructures , Bioelectric Energy Sources/microbiology , Electron Transport , Nanostructures/chemistry , Electricity , Bacteria/metabolism , Electrodes
4.
Mol Cell Biochem ; 478(7): 1519-1531, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36413334

ABSTRACT

Triple negative breast cancer (TNBC) is a kind of refractory cancer with poor response to conventional chemotherapy. Recently, the combination of baicalein and doxorubicin was reported to exert a synergistic antitumor effect on breast cancer. However, the underlying mechanism how baicalein sensitizes breast cancer cells to doxorubicin remains to be elucidated. Here, it was found that 20 µM baicalein increased the autophagy markers including the ratio of LC3B II/I, GFP-LC3 punctate aggregates and down-regulation of p62 expression, and up-regulated mitophagy marker PINK1 and Parkin in TNBC MDA-MB-231 cells as well. In contrast, doxorubicin decreased the levels of autophagy markers, and significantly up-regulated CDK1 in MDA-MB-231 cells. Pretreatment with baicalein markedly inhibited the doxorubicin-induced decrease in autophagy markers and up-regulation of CDK1, which was reversed by the autophagy inhibitor 3-Methyladenine. Moreover, baicalein alleviated the doxorubicin-induced expression and phosphorylation (at Ser616) of mitochondrial fission protein Drp1. Intriguingly, the autophagy inhibitor 3-Methyladenine also significantly weakened the effect of baicalein on doxorubicin-induced viability decrease and apoptosis in MDA-MB-231 cells. Taken together, our data indicate that baicalein improves the chemosensitivity of TNBC cells to doxorubicin through promoting the autophagy-mediated down-regulation of CDK1, also suggest a novel strategy for prevention of TNBC in the future.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , MDA-MB-231 Cells , Down-Regulation , Cell Line, Tumor , Doxorubicin/pharmacology , Autophagy , Apoptosis , Cell Proliferation , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/pharmacology
5.
Angew Chem Int Ed Engl ; 62(39): e202308950, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37553293

ABSTRACT

Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)3 3+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle "cores" before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)3 3+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.


Subject(s)
Nanoparticles , Protein Corona , Protein Corona/chemistry , Microscopy , Nanomedicine/methods , Kinetics , Proteins/chemistry , Nanoparticles/chemistry
6.
Exp Eye Res ; 224: 109239, 2022 11.
Article in English | MEDLINE | ID: mdl-36067824

ABSTRACT

Oxidative stress plays a crucial role in the damage of retinal neuronal cells. Curcumin, the phytocompound, has anti-inflammatory and antioxidative properties. It was shown that curcumin exerted a beneficial effect on retinal neuronal cell survival. However, the role of mitochondrial dynamics in curcumin-mediated protective effect on retinal neuronal cells remains to be elucidated. Here, H2O2 was used to mimic the oxidative stress in retinal neuronal R28 cells. Drp1 and Mfn2 are key regulators of mitochondrial fission and fusion. 100 µM of H2O2 significantly increased the cleavage of caspase-3 and Drp1 expression, but downregulated the expression of Mfn2. Pretreatment with 5 µM curcumin effectively alleviated H2O2-induced alterations in the expression of Drp1 and Mfn2 and mitochondrial fission in R28 cells. In addition, curcumin and Drp1 knockdown prevented H2O2-induced intracellular ROS increment and mitochondrial membrane potential disruption. On the contrary, knockdown of Mfn2 diminished curcumin-mediated protection against ROS increment and mitochondrial membrane potential disruption after H2O2. Moreover, curcumin protected R28 cells against H2O2-induced PINK1 expression, mitophagy, caspase-3 cleavage and apoptosis. Knockdown of Mfn2 significantly alleviated the protective effect of curcumin on R28 cells after H2O2. Taken together, our data indicate that curcumin protects against oxidative stress-induced injury in retinal neuronal cells by promoting mitochondrial fusion.


Subject(s)
Curcumin , Mitochondrial Dynamics , Curcumin/pharmacology , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/toxicity , Oxidative Stress , Apoptosis , Protein Kinases/metabolism , Protein Kinases/pharmacology
7.
Int J Med Sci ; 19(7): 1205-1215, 2022.
Article in English | MEDLINE | ID: mdl-35919821

ABSTRACT

Glioblastoma multiform (GBM) is a highly aggressive primary brain tumor. Exosomes derived from glioma cells under a hypoxic microenvironment play an important role in tumor biology including metastasis, angiogenesis and chemoresistance. However, the underlying mechanisms remain to be elucidated. In this study, we aimed to explore the role of connexin 43 on exosomal uptake and angiogenesis in glioma under hypoxia. U251 cells were exposed to 3% oxygen to achieve hypoxia, and the expression levels of HIF-1α and Cx43, involved in the colony formation and proliferation of cells were assessed. Exosomes were isolated by differential velocity centrifugation from U251 cells under normoxia and hypoxia (Nor-Exos and Hypo-Exos), respectively. Immunofluorescence staining, along with assays for CCK-8, tube formation and wound healing along with a transwell assay were conducted to profile exosomal uptake, proliferation, tube formation, migration and invasion of HUVECs, respectively. Our results revealed that Hypoxia significantly up-regulated the expression of HIF-1α in U251 cells as well as promoting proliferation and colony number. Hypoxia also increased the level of Cx43 in U251 cells and in the exosomes secreted. The uptake of Dio-stained Hypo-Exos by HUVECs was greater than that of Nor-Exos, and inhibition of Cx43 by 37,43gap27 or lenti-Cx43-shRNA efficiently prevented the uptake of Hypo-Exos by recipient endothelial cells. In addition, the proliferation and total loops of HUVECs were remarkably increased at 24 h, 48 h, and 10 h after Hypo-Exos, respectively. Notably, 37,43gap27, a specific Cx-mimetic peptide blocker of Cx37 and Cx43, efficiently alleviated Hypo-Exos-induced proliferation and tube formation by HUVECs. Finally, 37,43gap27 also significantly attenuated Hypo-Exos-induced migration and invasion of HUVECs. These findings demonstrate that exosomal Cx43 contributes to glioma angiogenesis mediated by Hypo-Exos, and suggests that exosomal Cx43 might serve as a potential therapeutic target for glioblastoma.


Subject(s)
Exosomes , Glioblastoma , MicroRNAs , Neovascularization, Pathologic , Cell Hypoxia , Cell Line, Tumor , Connexin 43/genetics , Connexin 43/metabolism , Endothelial Cells/metabolism , Exosomes/metabolism , Glioblastoma/genetics , Humans , MicroRNAs/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Tumor Microenvironment
8.
Biopharm Drug Dispos ; 43(6): 247-254, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36519186

ABSTRACT

As an analog of clopidogrel and prasugrel, vicagrel is completely hydrolyzed to intermediate thiolactone metabolite 2-oxo-clopidogrel (also the precursor of active thiol metabolite H4) in human intestine, predominantly by AADAC and CES2; however, other unknown vicagrel hydrolases remain to be identified. In this study, recombinant human Raf kinase inhibitor protein (rhRKIP) and pooled human intestinal S9 (HIS9) fractions and microsome (HIM) preparations were used as the different enzyme sources; prasugrel as a probe drug for RKIP (a positive control), vicagrel as a substrate drug of interest, and the rate of the formation of thiolactone metabolites 2-oxo-clopidogrel and R95913 as metrics of hydrolase activity examined, respectively. In addition, an IC50 value of inhibition of rhRKIP-catalyzed vicagrel hydrolysis by locostatin was measured, and five classical esterase inhibitors with distinct esterase selectivity were used to dissect the involvement of multiple hydrolases in vicagrel hydrolysis. The results showed that rhRKIP hydrolyzed vicagrel in vitro, with the values of Km , Vmax , and CLint measured as 20.04 ± 1.99 µM, 434.60 ± 12.46 nM/min/mg protein, and 21.69 ± 0.28 ml/min/mg protein, respectively, and that an IC50 value of locostatin was estimated as 1.24 ± 0.04 mM for rhRKIP. In addition to locostatin, eserine and vinblastine strongly suppressed vicagrel hydrolysis in HIM. It is concluded that RKIP can catalyze the hydrolysis of vicagrel in the human intestine, and that vicagrel can be hydrolyzed by multiple hydrolases, such as RKIP, AADAC, and CES2, concomitantly.


Subject(s)
Hydrolases , Phosphatidylethanolamine Binding Protein , Humans , Prasugrel Hydrochloride/metabolism , Phosphatidylethanolamine Binding Protein/metabolism , Clopidogrel , Hydrolases/metabolism , Esterases/metabolism , Intestines
9.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(3): 314-318, 2022 Mar 15.
Article in English, Zh | MEDLINE | ID: mdl-35351264

ABSTRACT

OBJECTIVES: To investigate the current status of unplanned readmission of neonates within 31 days after discharge from the neonatal intensive care unit (NICU) and risk factors for readmission. METHODS: A retrospective analysis was performed on the medical data of 1 561 infants discharged from the NICU, among whom 52 infants who were readmitted within 31 days were enrolled as the case group, and 104 infants who were not readmitted after discharge during the same period of time were enrolled as the control group. Univariate analysis and multivariate logistic regression analysis were performed to identify the risk factors for readmission. RESULTS: Among the 1 561 infants, a total of 63 readmissions occurred in 52 infants, with a readmission rate of 3.33%. hyperbilirubinemia and pneumonia were the main causes for readmission, accounting for 29% (18/63) and 24% (15/63) respectively. The multivariate logistic regression analysis showed that that gestational age <28 weeks, birth weight <1 500 g, multiple pregnancy, mechanical ventilation, and length of hospital stay <7 days were risk factors for readmission (OR=5.645, 5.750, 3.044, 3.331, and 1.718 respectively, P<0.05). CONCLUSIONS: Neonates have a relatively high risk of readmission after discharge from the NICU. The medical staff should pay attention to risk factors for readmission and formulate targeted intervention measures, so as to reduce readmission and improve the quality of medical service.


Subject(s)
Patient Discharge , Patient Readmission , Female , Humans , Infant , Infant, Newborn , Intensive Care Units, Neonatal , Pregnancy , Retrospective Studies , Risk Factors
10.
J Cell Mol Med ; 25(22): 10663-10673, 2021 11.
Article in English | MEDLINE | ID: mdl-34698450

ABSTRACT

The proliferation of pulmonary artery smooth muscle cells (PASMCs) is an important cause of pulmonary vascular remodelling in hypoxia-induced pulmonary hypertension (HPH). However, its underlying mechanism has not been well elucidated. Connexin 43 (Cx43) plays crucial roles in vascular smooth muscle cell proliferation in various cardiovascular diseases. Here, the male Sprague-Dawley (SD) rats were exposed to hypoxia (10% O2 ) for 21 days to induce rat HPH model. PASMCs were treated with CoCl2 (200 µM) for 24 h to establish the HPH cell model. It was found that hypoxia up-regulated the expression of Cx43 and phosphorylation of Cx43 at Ser 368 in rat pulmonary arteries and PASMCs, and stimulated the proliferation and migration of PASMCs. HIF-1α inhibitor echinomycin attenuated the CoCl2 -induced Cx43 expression and phosphorylation of Cx43 at Ser 368 in PASMCs. The interaction between HIF-1α and Cx43 promotor was also identified using chromatin immunoprecipitation assay. Moreover, Cx43 specific blocker (37,43 Gap27) or knockdown of Cx43 efficiently alleviated the proliferation and migration of PASMCs under chemically induced hypoxia. Therefore, the results above suggest that HIF-1α, as an upstream regulator, promotes the expression of Cx43, and the HIF-1α/Cx43 axis regulates the proliferation and migration of PASMCs in HPH.


Subject(s)
Connexin 43/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Cell Proliferation , Cells, Cultured , Connexin 43/agonists , Connexin 43/genetics , Hypoxia/genetics , Hypoxia/metabolism , Immunohistochemistry , Models, Biological , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Rats
11.
Analyst ; 146(6): 1835-1838, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33502405

ABSTRACT

Here, we proposed a ratiometric electrochemiluminescent (ECL) strategy in spatially multiplied ECL systems. By the specific recognition of hyaluronic acid with proteoglycan CD44 and epidermal growth factor with epidermal growth factor receptor on the cell surface, the cells were labelled with potential-resolved ECL probes, namely Ru(bpy)32+ and g-C3N4, respectively. The as-proposed cytosensor provides a multichannel ECL protocol to improve the throughput, which may push the application of ECL for the cellular immunoanalysis.


Subject(s)
Biosensing Techniques , Luminescent Measurements , Aniline Compounds , Electrodes , Hydrogels
12.
J Med Genet ; 57(6): 371-379, 2020 06.
Article in English | MEDLINE | ID: mdl-31888956

ABSTRACT

BACKGROUND: Congenital vertebral malformations (CVMs) manifest with abnormal vertebral morphology. Genetic factors have been implicated in CVM pathogenesis, but the underlying pathogenic mechanisms remain unclear in most subjects. We previously reported that the human 16p11.2 BP4-BP5 deletion and its associated TBX6 dosage reduction caused CVMs. We aim to investigate the reciprocal 16p11.2 BP4-BP5 duplication and its potential genetic contributions to CVMs. METHODS AND RESULTS: Patients who were found to carry the 16p11.2 BP4-BP5 duplication by chromosomal microarray analysis were retrospectively analysed for their vertebral phenotypes. The spinal assessments in seven duplication carriers showed that four (57%) presented characteristics of CVMs, supporting the contention that increased TBX6 dosage could induce CVMs. For further in vivo functional investigation in a model organism, we conducted genome editing of the upstream regulatory region of mouse Tbx6 using CRISPR-Cas9 and obtained three mouse mutant alleles (Tbx6up1 to Tbx6up3 ) with elevated expression levels of Tbx6. Luciferase reporter assays showed that the Tbx6up3 allele presented with the 160% expression level of that observed in the reference (+) allele. Therefore, the homozygous Tbx6up3/up3 mice could functionally mimic the TBX6 dosage of heterozygous carriers of 16p11.2 BP4-BP5 duplication (approximately 150%, ie, 3/2 gene dosage of the normal level). Remarkably, 60% of the Tbx6up3/up3 mice manifested with CVMs. Consistent with our observations in humans, the CVMs induced by increased Tbx6 dosage in mice mainly affected the cervical vertebrae. CONCLUSION: Our findings in humans and mice consistently support that an increased TBX6 dosage contributes to the risk of developing cervical CVMs.


Subject(s)
Cervical Vertebrae/abnormalities , Scoliosis/genetics , T-Box Domain Proteins/genetics , Alleles , Animals , Cervical Vertebrae/pathology , Disease Models, Animal , Gene Dosage/genetics , Genotype , Heterozygote , Humans , Mice , Mutation/genetics , Phenotype , Scoliosis/diagnostic imaging , Scoliosis/pathology
13.
Nano Lett ; 20(7): 4823-4828, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32496803

ABSTRACT

Electrochemical reduction of CO2 into value-added products is an effective approach to relieve environmental and energetic issues. Herein, EDTA anion-modified porous hollow copper microspheres (H-Cu MPs) were constructed by EDTA-2Na-assisted electrodeposition. The faradic efficiency (FE) of ethylene doubled from 23.3% to 50.1% at -0.82 V vs RHE in nearly neutral 0.1 M KHCO3 solution, one of the highest values among copper-based electrodeposited catalysts. Apart from the favorable influence from morphology regulated by EDTA-2Na, theoretical calculations revealed that the adsorbed EDTA anions were able to create a local charged copper surface to stabilize the transition state and dimer and to assist in the stabilization by interacting with OCCO adsorbate synergistically, which contributed to the outstanding catalytic performance together.

14.
Nano Lett ; 20(7): 5008-5016, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32515975

ABSTRACT

Monitoring and characterization methods that provide performance tracking of hydrogen evolution reaction (HER) at the single-nanoparticle level can greatly advance our understanding of catalysts' structure and activity relationships. Electrochemiluminescence (ECL) microscopy is implemented for the first time to identify HER activities of single nanocatalysts and to provide a direction for further optimization. Here, we develop a novel ECL blinking technique at the single-nanoparticle level to directly monitor H2 nanobubbles generated from hollow carbon nitride nanospheres (HCNSs). The ECL ON and OFF mechanisms are identified being closely related to the generation, growth, and collapse of H2 nanobubbles. The power-law distributed durations of ON and OFF states demonstrate multiple catalytic sites with stochastic activities on a single HCNS. The power-law coefficients of ECL blinking increase with improved HER activities from modified HCNSs with other active HER catalysts. Besides, ECL blinking phenomenon provides an explanation for the low cathodic ECL efficiency of semiconductor nanomaterials.

15.
Korean J Parasitol ; 59(6): 635-638, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34974670

ABSTRACT

In this study, we intended to describe a human case of lumbosacral canal sparganosis in People's Republic of China (China). A 56-year-old man was admitted to Xiangya Hospital Central South University in Changsha, Hunan province, China after having an experience of perianal pain for a week. An enhancing mass, a tumor clinically suggested, was showed at the S1-S2 level of the lumbosacral spine by the examination of magnetic resonance imaging (MRI) with gadolinium contrast. The patient was received the laminectomy from S1 to S2, and an ivory-white living worm was detected in inferior margin of L5. In ELISA-test with cerebrospinal fluid (CSF) and serum samples, anti-sparganum antibodies were detected. He had a ingesting history of undercooked frog meat in his youth. By the present study, a human case of spinal sparganosis invaded in lumbosacral canal at the S1-S2 level was diagnosed in China. Although the surgical removal of larvae is known to be the best way of treatment for sparganosis, we administered the high-dosage of praziquantel, albendazole and dexamethasone to prevent the occurrence of another remain worms in this study.


Subject(s)
Sparganosis , Adolescent , Animals , China , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Praziquantel , Sparganosis/diagnostic imaging , Sparganosis/surgery , Sparganum
16.
Angew Chem Int Ed Engl ; 60(11): 5948-5958, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33289255

ABSTRACT

The development of versatile nanotheranostic platforms that integrate both diagnostic and therapeutic functions have always been an intractable challenge in precise cancer treatment. Herein, an aptamer-tethered deoxyribonucleic acids-gold particle (Apt-DNA-Au) nanomachine has been developed for in situ imaging and targeted multimodal synergistic therapy of mammary carcinoma. Upon specifically internalized into MCF-7 cells, the tumor-related TK1 mRNA activates the Apt-DNA-Au nanomachine by DNA strand displacement cascades, resulting in the release of the fluorophore and antisense DNA as well as the aggregation of AuNPs for in situ imaging, suppression of survivin expression and photothermal therapy, respectively. Meanwhile, the controlled released drugs are used for chemotherapy, while under the laser irradiation the loaded photosensitizer produces reactive oxygen species (ROS) for photodynamic therapy. The results confirm that the proposed Apt-DNA-Au nanomachine provides a powerful nanotheranostic platform for in situ imaging-guided combinatorial anticancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , DNA/pharmacology , Doxorubicin/pharmacology , Gold/pharmacology , Optical Imaging , RNA, Messenger/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Cell Line , Cell Survival/drug effects , DNA/chemistry , Doxorubicin/chemical synthesis , Doxorubicin/chemistry , Female , Gold/chemistry , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Metal Nanoparticles/chemistry , Particle Size , Photothermal Therapy , Spectrometry, Fluorescence , Theranostic Nanomedicine
17.
Bioconjug Chem ; 31(2): 332-339, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31613602

ABSTRACT

Over the past two decades, amorphous nanoscale coordination polymers (NCPs) and crystalline nanoscale metal-organic frameworks (NMOFs) have emerged as attractive nanomaterials in biomedical applications, especially in drug delivery, biomedical imaging, and biosensing. The biodegradability, tunable composition, and feasible functionality of NCPs/NMOFs make them excellent contrast agents or nanocarriers for biomedical imaging, including magnetic resonance (MR) imaging, positron emission tomography (PET), computed tomography (CT), optical imaging, and photoacoustic (PA) imaging. In this Topical Review, we will summarize the recent advances of NCPs/NMOFs in biomedical imaging with emphasis on research over the past three years. A variety of imaging technologies based on NCPs/NMOFs will be discussed, followed by the introduction of the application of NCPs/NMOFs in multimodal imaging where optical/MR imaging is highlighted. In the final part, we will make concluding remarks and point out the challenges and prospects for the further development in this area of research.


Subject(s)
Coordination Complexes/analysis , Magnetic Resonance Imaging/methods , Metal-Organic Frameworks/analysis , Nanostructures/analysis , Optical Imaging/methods , Polymers/analysis , Animals , Humans , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods
18.
Am J Physiol Cell Physiol ; 316(3): C415-C423, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30649922

ABSTRACT

Both zipcode binding protein-1 (ZBP1) and phospholipase C-γ1 (PLCγ1) are intimately involved in many aspects of early intestinal mucosal repair after acute injury, but the exact mechanisms that control their cellular abundances remain largely unknown. The present study shows that microRNA-222 (miR-222) interacts with the mRNAs encoding ZBP1 and PLCγ1 and regulates ZBP1 and PLCγ1 expression in intestinal epithelial cells (IECs). The biotinylated miR-222 bound specifically to the ZBP1 and PLCγ1 mRNAs in IECs. Ectopically expressed miR-222 precursor destabilized the ZBP1 and PLCγ1 mRNAs and consequently lowered the levels of cellular ZBP1 and PLCγ1 proteins. Conversely, decreasing the levels of cellular miR-222 by transfection with its antagonism increased the stability of the ZBP1 and PLCγ1 mRNAs and increased the levels of ZBP1 and PLCγ1 proteins. Overexpression of miR-222 also inhibited cell migration over the wounded area, which was partially abolished by overexpressing ZBP1 and PLCγ1. Furthermore, prevention of the increased levels of ZBP1 and PLCγ1 in the miR-222-silenced cells by transfection with specific small interfering RNAs targeting ZBP1 or PLCγ1 mRNA inhibited cell migration after wounding. These findings indicate that induced miR-222 represses expression of ZBP1 and PLCγ1 at the posttranscriptional level, thus inhibiting IEC migration during intestinal epithelial restitution after wounding.


Subject(s)
DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , MicroRNAs/metabolism , Phospholipase C gamma/metabolism , Cell Line, Tumor , Cell Movement/physiology , HCT116 Cells , Humans , Intestines/physiology , RNA Interference/physiology , RNA, Messenger/metabolism , RNA-Binding Proteins , Transfection/methods , Wound Healing/physiology
19.
Anal Chem ; 91(19): 12298-12306, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31486639

ABSTRACT

A "signal-off" surface-enhanced Raman scattering (SERS) platform has been constructed for ultrasensitive detection of miRNA-21 by integrating exonuclease-assisted target recycling amplification with a plasmon coupling enhancement effect. On this platform, Raman-labeled Au nanostar (AuNS) probes can be covalently linked with the thiolated aptamer (Apt) on the Au-decorated silicon nanowire arrays (SiNWAs/Au) substrate, creating a coupled electromagnetic field between the substrate and the probes to enhance Raman signal. In the presence of miRNA-21, T7 exonuclease specifically hydrolyzed Apt on Apt/miRNA duplex to release miRNA-21. The regenerated element could then initiate another cycle of Apt/miRNA duplex formation and Apt cleavage. Correspondingly, the capture ability of substrate toward probes and the plasmon coupling effect between them were both diminished, giving a prominent attenuation of Raman intensity that can work as the detection signal. Due to the cascading integration between the target cycle process and the plasmon coupling effect, the present platform displayed a very low detection limit (0.34 fM, 3σ) for miRNA-21 detection. Furthermore, it was proven to be effective for analyzing miRNA-21 in biological samples and distinguishing the expression levels of miRNA-21 in MCF-7 cells and NIH3T3 cells, which became a promising tool to monitor miRNA-21 in cancer auxiliary diagnosis and drug screening.


Subject(s)
Biosensing Techniques/instrumentation , MicroRNAs/analysis , Nucleic Acid Amplification Techniques/methods , Spectrum Analysis, Raman/methods , Animals , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electromagnetic Fields , Exodeoxyribonucleases/genetics , Gold/chemistry , Humans , Limit of Detection , MCF-7 Cells , Metal Nanoparticles/chemistry , Mice , MicroRNAs/blood , NIH 3T3 Cells , Reproducibility of Results , Sensitivity and Specificity , Spectrum Analysis, Raman/instrumentation
20.
Anal Chem ; 91(1): 864-872, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30499654

ABSTRACT

Cardiorenal syndrome (CRS) has posed tremendous challenges in patient management, and the detection of serum biomarkers may provide opportunities for early diagnosis and effective treatment. Herein, we introduce a novel surface-enhanced Raman scattering (SERS)-based sandwich immunoassay platform to simultaneously detect cardiac troponin I (cTnI), N-terminal prohormone of brain natriuretic peptide (NT-ProBNP), and neutrophil gelatinase-associated lipocalin (NGAL) for the early diagnosis of CRS by using Raman reporter-molecule-labeled Ag-Au nanostars (Ag-Au NSs) as nanotags and a three-dimensional ordered macroporous (3DOM) Au-Ag-Au plasmonic array as substrate. The Ag-Au NSs prepared by galvanic replacement feature bimetallic composition and a multibranched structure so that high SERS stability and enhancement are exhibited. Meanwhile, a 3DOM Au-Ag-Au plasmonic array was fabricated through Au-assisted electrodeposition and was further covered by a protective Au layer; it is characterized by a large specific surface area and high homogeneity, serving as a "hot field". When the nanotags and substrate were combined, "hot spots" were generated from the plasmon near-field coupling, which greatly increased the SERS enhancement. The limits of detection (LODs) were 0.76, 0.53, and 0.41 fg mL-1 for cTnI, NT-ProBNP, and NGAL, respectively, and the Raman images indicated the approximate concentration ranges of the detected proteins for visual analysis. Taking advantage of the ultrasensitivity and multiplexing capability of this approach, we further analyzed clinical blood samples with high integrality, efficiency, and accuracy. Therefore, the presented SERS immunoassay platform holds promise as an ideal test method for point-of-care detection and a powerful tool for investigations into the complex CRS-related biological process.


Subject(s)
Cardio-Renal Syndrome/diagnosis , Lipocalin-2/blood , Metal Nanoparticles/chemistry , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Spectrum Analysis, Raman/methods , Troponin I/blood , Antibodies, Immobilized/immunology , Biomarkers/blood , Gold/chemistry , Humans , Immunoassay/methods , Limit of Detection , Lipocalin-2/immunology , Natriuretic Peptide, Brain/immunology , Peptide Fragments/immunology , Silver/chemistry , Troponin I/immunology
SELECTION OF CITATIONS
SEARCH DETAIL