Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell ; 139(3): 610-22, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19879846

ABSTRACT

Protein-DNA interactions (PDIs) mediate a broad range of functions essential for cellular differentiation, function, and survival. However, it is still a daunting task to comprehensively identify and profile sequence-specific PDIs in complex genomes. Here, we have used a combined bioinformatics and protein microarray-based strategy to systematically characterize the human protein-DNA interactome. We identified 17,718 PDIs between 460 DNA motifs predicted to regulate transcription and 4,191 human proteins of various functional classes. Among them, we recovered many known PDIs for transcription factors (TFs). We identified a large number of unanticipated PDIs for known TFs, as well as for previously uncharacterized TFs. We also found that over three hundred unconventional DNA-binding proteins (uDBPs)--which include RNA-binding proteins, mitochondrial proteins, and protein kinases--showed sequence-specific PDIs. One such uDBP, ERK2, acts as a transcriptional repressor for interferon gamma-induced genes, suggesting important biological roles for such proteins.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Interferon-gamma/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Signal Transduction , Gene Expression Profiling , Gene Regulatory Networks , Humans
2.
BMC Pregnancy Childbirth ; 24(1): 258, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605294

ABSTRACT

BACKGROUND: Embryo quality is usually regarded as a key predictor of successful implantation and clinical pregnancy potential. The identification of embryos that have the capacity to implant and result in a healthy pregnancy is a crucial part of in vitro fertilization (IVF). Usually, morphologically high-quality embryos are chosen for embryo transfer in IVF treatment. The aim of this study was to assess the association between the available blastocyst formation rate and the clinical pregnancy outcome following the first fresh embryo transfer cycle and provide systematic individual treatment to adjust endometrial receptivity for the next transfer cycle. METHODS: This retrospective, single-center study included 512 fresh embryo transfers conducted between 11/2019 and 08/2021, which consisted of 385 cleavage-stage (Day 3) and 127 blastocyst-stage (Day 5) embryo transfers. The two groups were divided into a clinical pregnancy group and a nonclinical pregnancy group for comparison. The association between the available blastocyst formation rate and the clinical pregnancy rate in the Day 3 and Day 5 transfer groups were considered. RESULTS: In the Day 3 group, there were 275 clinical pregnancies, and the clinical pregnancy rate was 71.43%. Although the two pronuclei (2PN) oocyte rate and available embryo rate at Day 3 were significantly higher in the clinical pregnancy group than the nonclinical pregnancy group (P < 0.05), the blastocyst formation rate and the available blastocyst formation rate were not significantly different between the clinical pregnancy group and the nonclinical pregnancy group (P > 0.05). In the Day 5 group, there were 81 clinical pregnancies, and the clinical pregnancy rate was 63.78%. No baseline characteristics showed any obvious differences between the clinical pregnancy group and nonclinical pregnancy group (P > 0.05). The blastocyst formation rate in the nonclinical pregnancy group was higher than that in the clinical pregnancy group, but the difference was not statistically significant (81.06% vs. 77.03%, P = 0.083). Interestingly, the available blastocyst formation rate and the Day 5 available blastocyst formation rate were significantly higher in the nonclinical pregnancy group than the clinical pregnancy group (66.19% vs. 60.79%, P = 0.014; 54.58% vs. 46.98%, P = 0.007). CONCLUSIONS: In fresh cycles, the available blastocyst formation rate was not associated with the clinical pregnancy outcome for Day 3 embryo transfers, and the available blastocyst formation rate was not positively correlated with the clinical pregnancy outcome for Day 5 embryo transfers.


Subject(s)
Embryo Transfer , Fertilization in Vitro , Female , Pregnancy , Humans , Retrospective Studies , Pregnancy Rate , Pregnancy Outcome , Blastocyst , Endometrium
3.
Drug Dev Res ; 83(1): 55-63, 2022 02.
Article in English | MEDLINE | ID: mdl-34151456

ABSTRACT

Although 1H-benzo[d]imidazole-4-carboxamide derivatives have been explored for a long time, the structure-activity relationship of the substituents in the hydrophobic pocket (AD binding sites) has not thoroughly discovered. Here in, a series of 2-(4-[4-acetylpiperazine-1-carbonyl]phenyl)-1H-benzo[d]imidazole-4-carboxamide derivatives have been designed, synthesized, and successful characterization as novel and effective poly ADP-ribose polymerases (PARP)-1 inhibitors to improve the structure-activity relationships about the substituents in the hydrophobic pocket. These derivatives were evaluated for their PARP-1 inhibitory activity and cellular inhibitory against BRCA-1 deficient cells (MDA-MB-436) and wild cells (MCF-7) using PARP kit assay and MTT method. The results indicated that compared with other heterocyclic compounds, furan ring-substituted derivatives 14n-14q showed better PARP-1 inhibitory activity. Among this derivatives, compound 14p displayed the strongest inhibitory effects on PARP-1 enzyme (IC50  = 0.023 µM), which was close to that of Olaparib. 14p (IC50  = 43.56 ± 0.69 µM) and 14q (IC50  = 36.69 ± 0.83 µM) displayed good antiproliferation activity on MDA-MB-436 cells and inactivity on MCF-7 cells, indicating that 14p and 14q have high selectivity and targeting. The molecular docking method was used to explore the binding mode of compound 14p and PARP-1, and implied that the formation of hydrogen bond was essential for PARP-1 inhibition activities. This study also showed that in the hydrophobic pocket (AD binding sites), the introduction of strong electronegative groups (furan ring, e.g.) or halogen atoms in the side chain of benzimidazole might improve its inhibitory activity and this strategy could be applied in further research.


Subject(s)
Antineoplastic Agents , Poly(ADP-ribose) Polymerase Inhibitors , Aminoimidazole Carboxamide/analogs & derivatives , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Molecular Structure , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Structure-Activity Relationship
4.
Nat Methods ; 15(5): 330-338, 2018 05.
Article in English | MEDLINE | ID: mdl-29638227

ABSTRACT

A key component of efforts to address the reproducibility crisis in biomedical research is the development of rigorously validated and renewable protein-affinity reagents. As part of the US National Institutes of Health (NIH) Protein Capture Reagents Program (PCRP), we have generated a collection of 1,406 highly validated immunoprecipitation- and/or immunoblotting-grade mouse monoclonal antibodies (mAbs) to 737 human transcription factors, using an integrated production and validation pipeline. We used HuProt human protein microarrays as a primary validation tool to identify mAbs with high specificity for their cognate targets. We further validated PCRP mAbs by means of multiple experimental applications, including immunoprecipitation, immunoblotting, chromatin immunoprecipitation followed by sequencing (ChIP-seq), and immunohistochemistry. We also conducted a meta-analysis that identified critical variables that contribute to the generation of high-quality mAbs. All validation data, protocols, and links to PCRP mAb suppliers are available at http://proteincapture.org.


Subject(s)
Antibodies, Monoclonal/immunology , Protein Array Analysis/methods , Transcription Factors/metabolism , Animals , Cloning, Molecular , Databases, Factual , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Reproducibility of Results
5.
Andrologia ; 53(1): e13867, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33141951

ABSTRACT

Chromosomal abnormality is a primary genetic factor that lead to azoospermia and male infertility. Here, we report the cases of two brothers with primary infertility, whose chromosomes displayed a balanced translocation, and their karyotypes were 46,Y, t(X; 1) (q28; q21). Both presented an azoospermia phenotype without abnormal clinical symptoms. Their mother's karyotype was 46,X, t(X; 1) (q28; q21), and their father's chromosome karyotype was 46,XY. No abnormal changes were noted in the copy number of chromosome fragments in the whole genome. This study is the first to report showing that 46,Y, t(X; 1) (q28; q21) chromosomal abnormalities are associated with azoospermia.


Subject(s)
Azoospermia , Infertility, Male , Azoospermia/genetics , Chromosome Aberrations , Chromosomes, Human, Y , Humans , Male , Sex Chromosome Aberrations , Siblings
6.
Glia ; 68(10): 1987-2000, 2020 10.
Article in English | MEDLINE | ID: mdl-32173924

ABSTRACT

Tanycytes are radial glial cells located in the mediobasal hypothalamus. Recent studies have proposed that tanycytes play an important role in hypothalamic control of energy homeostasis, although this has not been directly tested. Here, we report the phenotype of mice in which tanycytes of the arcuate nucleus and median eminence were conditionally ablated in adult mice. Although the cerebrospinal fluid-hypothalamic barrier was rendered more permeable following tanycyte ablation, neither the blood-hypothalamic barrier nor leptin-induced pSTAT3 activation in hypothalamic parenchyma were affected. We observed a significant increase in visceral fat distribution accompanying insulin insensitivity in male mice, without significant effect on either body weight or food intake. A high-fat diet tended to accelerate overall body weight gain in tanycyte-ablated mice, but the development of visceral adiposity and insulin insensitivity was comparable to wildtype. Thermoneutral housing exacerbated fat accumulation and produced a shift away from fat oxidation in tanycyte-ablated mice. These results clarify the extent to which tanycytes regulate energy balance, and demonstrate a role for tanycytes in regulating fat metabolism.


Subject(s)
Adipose Tissue/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Ependymoglial Cells/metabolism , Gene Deletion , Median Eminence/metabolism , Obesity/metabolism , Animals , Arcuate Nucleus of Hypothalamus/chemistry , Energy Metabolism/physiology , Ependymoglial Cells/chemistry , Male , Median Eminence/chemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/genetics
7.
Blood ; 131(12): 1325-1336, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29437589

ABSTRACT

B-cell lymphomas are heterogeneous blood disorders with limited therapeutic options, largely because of their propensity to relapse and become refractory to treatments. Carabin, a key suppressor of B-cell receptor signaling and proliferation, is inactivated in B-cell lymphoma by unknown mechanisms. Here, we identify prolyl 4-hydroxylase 2 (P4HA2) as a specific proline hydroxylase of Carabin. Carabin hydroxylation leads to its proteasomal degradation, thereby activating the Ras/extracellular signal-regulated kinase pathway and increasing B-cell lymphoma proliferation. P4HA2 is undetectable in normal B cells but upregulated in the diffuse large B-cell lymphoma (DLBCL), driving Carabin inactivation and lymphoma proliferation. Our results indicate that P4HA2 is a potential prognosis marker for DLBCL and a promising pharmacological target for developing treatment of molecularly stratified B-cell lymphomas.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Biomarkers, Tumor/metabolism , Cell Proliferation , Lymphoma, Large B-Cell, Diffuse/metabolism , MAP Kinase Signaling System , Neoplasm Proteins/metabolism , Prolyl Hydroxylases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , GTPase-Activating Proteins , Humans , Hydroxylation , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Neoplasm Proteins/genetics , Prolyl Hydroxylases/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis
8.
Nucleic Acids Res ; 43(21): 10157-67, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26464436

ABSTRACT

Eukaryotic translation initiation factor eIF4AI, the founding member of DEAD-box helicases, undergoes ATP hydrolysis-coupled conformational changes to unwind mRNA secondary structures during translation initiation. However, the mechanism of its coupled enzymatic activities remains unclear. Here we report that a gating mechanism for Pi release controlled by the inter-domain linker of eIF4AI regulates the coupling between ATP hydrolysis and RNA unwinding. Molecular dynamic simulations and experimental results revealed that, through forming a hydrophobic core with the conserved SAT motif of the N-terminal domain and I357 from the C-terminal domain, the linker gated the release of Pi from the hydrolysis site, which avoided futile hydrolysis cycles of eIF4AI. Further mutagenesis studies suggested this linker also plays an auto-inhibitory role in the enzymatic activity of eIF4AI, which may be essential for its function during translation initiation. Overall, our results reveal a novel regulatory mechanism that controls eIF4AI-mediated mRNA unwinding and can guide further mechanistic studies on other DEAD-box helicases.


Subject(s)
Eukaryotic Initiation Factor-4A/chemistry , Peptide Chain Initiation, Translational , RNA, Messenger/chemistry , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Motifs , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Molecular Dynamics Simulation , Mutation , Phosphates/chemistry , Phosphates/metabolism , Protein Binding , Protein Conformation , RNA, Messenger/metabolism
9.
Mol Cell Proteomics ; 12(10): 2804-19, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23824909

ABSTRACT

Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Cell Line, Tumor , Humans , Protein Array Analysis , Protein Interaction Mapping , Proteome
10.
Nat Methods ; 8(12): 1050-2, 2011 Oct 30.
Article in English | MEDLINE | ID: mdl-22037702

ABSTRACT

Gateway-compatible yeast one-hybrid (Y1H) assays provide a convenient gene-centered (DNA to protein) approach to identify transcription factors that can bind a DNA sequence of interest. We present Y1H resources, including clones for 988 of 1,434 (69%) predicted human transcription factors, that can be used to detect both known and new interactions between human DNA regions and transcription factors.


Subject(s)
Gene Regulatory Networks/genetics , Genes/genetics , Two-Hybrid System Techniques , Binding Sites , DNA/genetics , Humans , Software , Transcription Factors/metabolism
11.
Mol Cell Proteomics ; 11(9): 669-80, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22647870

ABSTRACT

Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease of unknown etiology and is considered to be an autoimmune disease. Autoantibodies are important tools for accurate diagnosis of PBC. Here, we employed serum profiling analysis using a human proteome microarray composed of about 17,000 full-length unique proteins and identified 23 proteins that correlated with PBC. To validate these results, we fabricated a PBC-focused microarray with 21 of these newly identified candidates and nine additional known PBC antigens. By screening the PBC microarrays with additional cohorts of 191 PBC patients and 321 controls (43 autoimmune hepatitis, 55 hepatitis B virus, 31 hepatitis C virus, 48 rheumatoid arthritis, 45 systematic lupus erythematosus, 49 systemic sclerosis, and 50 healthy), six proteins were confirmed as novel PBC autoantigens with high sensitivities and specificities, including hexokinase-1 (isoforms I and II), Kelch-like protein 7, Kelch-like protein 12, zinc finger and BTB domain-containing protein 2, and eukaryotic translation initiation factor 2C, subunit 1. To facilitate clinical diagnosis, we developed ELISA for Kelch-like protein 12 and zinc finger and BTB domain-containing protein 2 and tested large cohorts (297 PBC and 637 control sera) to confirm the sensitivities and specificities observed in the microarray-based assays. In conclusion, our research showed that a strategy using high content protein microarray combined with a smaller but more focused protein microarray can effectively identify and validate novel PBC-specific autoantigens and has the capacity to be translated to clinical diagnosis by means of an ELISA-based method.


Subject(s)
Autoantibodies/blood , Autoantigens/analysis , Liver Cirrhosis, Biliary , Protein Array Analysis , Proteome/analysis , Adult , Argonaute Proteins/immunology , Autoantibodies/immunology , Autoantigens/immunology , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Carrier Proteins/analysis , Carrier Proteins/immunology , Eukaryotic Initiation Factors/immunology , Female , Hexokinase/analysis , Hexokinase/immunology , Humans , Liver Cirrhosis, Biliary/blood , Liver Cirrhosis, Biliary/diagnosis , Liver Cirrhosis, Biliary/immunology , Male , Middle Aged , Proteome/immunology , Repressor Proteins/analysis , Repressor Proteins/immunology , Sensitivity and Specificity , Zinc Fingers/immunology
12.
Mol Cell Proteomics ; 11(6): O111.016253, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22307071

ABSTRACT

To broaden the range of tools available for proteomic research, we generated a library of 16,368 unique full-length human ORFs that are expressible as N-terminal GST-His(6) fusion proteins. Following expression in yeast, these proteins were then individually purified and used to construct a human proteome microarray. To demonstrate the usefulness of this reagent, we developed a streamlined strategy for the production of monospecific monoclonal antibodies that used immunization with live human cells and microarray-based analysis of antibody specificity as its central components. We showed that microarray-based analysis of antibody specificity can be performed efficiently using a two-dimensional pooling strategy. We also demonstrated that our immunization and selection strategies result in a large fraction of monospecific monoclonal antibodies that are both immunoblot and immunoprecipitation grade. Our data indicate that the pipeline provides a robust platform for the generation of monoclonal antibodies of exceptional specificity.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/immunology , Antibody Specificity , Proteome/immunology , Recombinant Fusion Proteins/immunology , Animals , Antigens/chemistry , Antigens/immunology , Cell Line, Tumor , Humans , Hybridomas , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Mice , Mice, Inbred BALB C , Protein Array Analysis , Proteome/chemistry , Recombinant Fusion Proteins/chemistry
13.
Eur J Med Chem ; 273: 116520, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38788299

ABSTRACT

The absence of effective active pockets makes traditional molecularly targeted drug strategies ineffective against 80 % of human disease-related proteins. The PROTAC technology effectively makes up for the deficiency of traditional molecular targeted drugs, which produces drug activity by degrading rather than inhibiting the target protein. The degradation of PROTAC is not only affected by POI ligand and E3 ligand, but by the selection of suitable linker which can play an important role in the efficiency and selectivity of the degradation. In the early exploring stage of the PROTAC, flexible chains were priorly applied as the linker of PROTAC. Although PROTAC with flexible chains as linkers sometimes perform well in vitro bioactivity evaluations, the introduction of lipophilic flexible chains reduces the hydrophilicity of these molecules, resulting in generally poor pharmacokinetic characteristics and pharmacological activities in vivo. In addition, recent reports have also shown that some PROTAC with flexible chains have some risks to causing hemolysis in vivo. Therefore, PROTAC with flexible chains show less druggability and large difficulty to entering the clinical trial stage. On the other hand, the application of nitrogen heterocycles in the design of PROTAC linkers has been widely reported in recent years. More and more reports have shown that the introduction of nitrogen heterocycles in the linker not only can effectively improves the metabolism of PROTAC in vivo, but also can enhance the degradation efficiency and selectivity of PROTAC. These PROTAC with nitrogen heterocycle linkers have attracted much attention of pharmaceutical chemists. The introduction of nitrogen heterocycles in the linker deserves priority consideration in the primary design of the PROTAC based on various druggabilities including pharmacokinetic characteristics and pharmacological activity. In this work, we summarized the optimization process and progress of nitrogen heterocyclic rings as the PROTAC linker in recent years. However, there were still limited understanding of how to discover, design and optimize PROTAC. For example, the selection of the types of nitrogen heterocycles and the optimization sites of this linker are challenges for researchers, choosing between four to six-membered nitrogen heterocycles, selecting from saturated to unsaturated ones, and even optimizing the length and extension angle of the linker. There is a truly need for theoretical explanation and elucidation of the PROTAC to guide the developing of more effective and valuable PROTAC.


Subject(s)
Heterocyclic Compounds , Nitrogen , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Humans , Nitrogen/chemistry , Molecular Structure , Animals , Ligands
14.
Curr Med Chem ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659263

ABSTRACT

Gastric cancer was the fifth most common cancer, and its drug treatment mainly included chemotherapy, targeted therapy, and immunotherapy. With the rise of immunotherapy in gastric cancer, small-molecule anti-gastric cancer drugs still have irreplaceable places because of many advantages, such as high stability and mass-productivity, high efficiency, and low cost. At present, the small-molecule anti-gastric cancer drugs in the clinic are constrained by their side effects. So, developing more novel anti-gastric cancer drugs with better efficacy and fewer side effects is urgently needed. Nitrogen-containing heterocycle molecules have attracted much attention from researchers due to their high biocompatibility, activity, and bioavailability, and they even could act with a unique mechanism. This review summarized various types of nitrogen-containing heterocycle antigastric cancer lead compounds from 2017 to 2022 in the last five years. Compared with monocyclic nitrogen-containing heterocycle and bicyclic nitrogen-containing heterocycle, the thick nitrogen-containing heterocycle applied as the skeleton not only showed high efficiency and low toxicity but also, interestingly, may have had some unique mechanism such as inhibition of aurora A and B kinases, etc. We propose two prospective and valuable strategies to develop more efficient candidates for anti-gastric cancer. One strategy was further optimized for some lead compounds mentioned in this review. The other strategy involved utilizing the "pseudo-natural products" concept proposed by Professor Wilhelm Waldmann, combining different nitrogen-containing heterocycle fragments in two and three-dimensional spaces to obtain new thick nitrogen-containing heterocycle skeletons. The strategy will contribute to the expansion of the thick nitrogenous heterocycle's framework, and it was expected that more novel mechanisms and more effective antigastric drugs could be found. These two strategies are expected to help researchers develop more anti-gastric cancer drugs with better potency and lower side effects.

15.
Adv Healthc Mater ; 13(8): e2303175, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37985358

ABSTRACT

As prospective phototheranostic agents for cancer imaging and therapy, semiconducting organic molecule-based nanomedicines are developed. However, near-infrared (NIR) emission, and tunable type I (O2 • -) and type II (1O2) photoinduced reactive oxygen species (ROS) generation to boost cancer photoimmunotherapy remains a big challenge. Herein, a series of D-π-A structures, NIR absorbing perylene diimides (PDIs) with heavy atom bromide modification at the bay position of PDIs are prepared for investigating the optimal photoinduced type I/II ROS generation. The heavy atom effect has demonstrated a reduction of molecular ∆EST and promotion of the intersystem crossing processes of PDIs, enhancing the photodynamic therapy (PDT) efficacy. The modification of three bromides and one pyrrolidine at the bay position of PDI (TBDT) has demonstrated the best type I/II PDT performance by batch experiments and theoretical calculations. TBDT based nanoplatforms (TBDT NPs) enable type I/II PDT in the hypoxic tumor microenvironment as a strong immunogenic cell death (ICD) inducer. Moreover, TBDT NPs showing NIR emission allow in vivo bioimaging guided phototherapy of tumor. This work uses novel PDIs with adjustable type I/II ROS production to promote antitumor immune response and accomplish effective tumor eradication, consequently offering molecular guidelines for building high-efficiency ICD inducers.


Subject(s)
Antineoplastic Agents , Imides , Nanoparticles , Neoplasms , Perylene , Perylene/analogs & derivatives , Photochemotherapy , Humans , Reactive Oxygen Species , Perylene/chemistry , Perylene/therapeutic use , Prospective Studies , Nanoparticles/chemistry , Phototherapy , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Tumor Microenvironment
16.
Eur J Med Chem ; 271: 116405, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38678823

ABSTRACT

PARPi have been explored and applied in the treatment of various cancers with remarkable efficacy, especially BRCA1/2 mutated ovarian, breast, prostate, and pancreatic cancers. However, PARPi renders inevitable drug resistance and showed high toxicity because of PARP-Trapping with long-term clinic tracking. To overcome the drug resistance and the high toxicity of PARPi, many novel methods have been developed including PROTACs. Being an event-driven technology, PROTACs needs a high affinity, low toxicity warhead with no steric hindrance in binding process. Veliparib shows the lowest PARP-Trapping effect but could hardly to be the warhead of PROTACs because of the strong steric hindrance. Other PARP1 inhibitors showed less steric hindrance but owns high PARP-Trapping effect. Thus, the development of novel warhead with high PARP1 affinity, low PARP1-Trapping, and no steric hindrance would be valuable. In this work, we reserved benzimidazole as the motif to reserve the low PARP1-Trapping effect and substituted the pyrrole by aromatic ring to avoiding the steric hindrance in PARP1 binding cave. Thus, a series of benzimidazole derivates were designed and synthesized, and some biological activities in vitro were evaluated including the inhibition for PARP1 enzyme and the PARP-Trapping effect using MDA-MB-436 cell line. Results showed that the compound 19A10 has higher PARP1 affinity(IC50 = 4.62 nM)) and similar low PARP-Trapping effect compared with Veliparib(IC50 (MDA-MB-436) >100 µM). Docking study showed that the compound 19A10 could avoiding the steric hindrance which was much better than Veliparib. So, the compound 19A10 could potentially be a perfect warhead for PARP1 degraders. Besides, because of the depletion of the PARP1 and the decreasing of the binding capability, we suppose that the PROTACs using 19A10 as the warhead would be no-PARP-Trapping effect. Furthermore, QSAR study showed that to develop novel compounds with high PARP1 binding affinity and low PARP-Trapping, we can choose the skeleton with substituent R1H, R2 = piperiazine, and R3 with large tPSA. And, if we want to develop the compounds with high PARP1 binding affinity and high PARP-Trapping which can possibly improve the lethality against tumor cells, we can choose the skeleton with substituent R1F, R2 = 3-methy-piperiazine, and R3 with large tPSA.


Subject(s)
Antineoplastic Agents , Benzimidazoles , Drug Screening Assays, Antitumor , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Molecular Docking Simulation
17.
Chem Biol Drug Des ; 101(6): 1335-1347, 2023 06.
Article in English | MEDLINE | ID: mdl-36752693

ABSTRACT

Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have been successfully applied in the clinical treatment of various cancer. Side effects and drug resistant cases were reported, and more effective PARP-1 inhibitors were required. However, studies on the AD site of PARP-1 inhibitors are currently incomplete. Therefore, to synthesize more potential candidate PARP-1 inhibitors and disclose some AD site SAR of the PARP-1 inhibitors, herein, a series of 2-phenyl-benzimidazole-4-carboxamide derivatives using different saturated nitrogen-contained heterocycles as linker group (6a-6t) have been designed, synthesized, and evaluated PARP-1 inhibitory activity and proliferation inhibitory against BRCA-1 mutant MDA-MB-436 cell line in vitro. The results showed 6b (IC50 = 8.65 nM) exhibited the most PARP-1 enzyme inhibitory activity comparable with Veliparib (IC50 = 15.54 nM) and Olaparib (IC50 = 2.77 nM); 6m exhibited the strongest MDA-MB-436 cell anti-proliferation activity (IC50 = 25.36 ± 6.06 µM) comparable with Olaparib (IC50 = 23.89 ± 3.81 µM). The compounds 6b, 6r, and 6m could be potential candidates for effective PARP-1 inhibitors and valuable for further optimization. The analysis of activity data also showed that the holistically anti-proliferation activity of the 1,4-diazepane group was about~twofold than that of the piperazine group. Meanwhile, the terminal 3-methyl-furanyl group exhibited the most robust PARP-1 inhibitory and anti-proliferation activity. It is hoped that the results could benefitable for further optimization of PARP-1 inhibitors. Furthermore, we note that some compounds (6d,6g,6n,6p,6s) showed poor PARP-1 inhibitory (>500 nM) but relatively good anti-proliferation activity, which indicates the proliferation inhibitory mechanism against MDA-MB-436 cell line was worth investigating in-depth.


Subject(s)
Antineoplastic Agents , Poly(ADP-ribose) Polymerase Inhibitors , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Structure-Activity Relationship , Aminoimidazole Carboxamide/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation
18.
Int J Biol Macromol ; 247: 125698, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37414326

ABSTRACT

Antimicrobial peptides (AMPs) exert their biological functions by perturbation with cellular membrane. Conjugation of AMPs with photosensitizer (PS) is a promising strategy for enhancing the efficacy and reducing systemic toxicity of AMPs. However, it is still elusive how the conjugated PS impacts the perturbation of AMPs on cell membrane from molecular level. Here, we addressed this issue by a multiscale computational strategy on pyropheophorbide-a (PPA) conjugated K6L9 (PPA-K6L9), a PS-AMP conjugate developed by us previously. Our atomistic molecular dynamics (MD) simulations revealed that the porphyrin moiety of PPA enhanced the stability of the conjugate in a lipid bilayer membrane model. Moreover, such moiety also maintained the amphipathic structure of K6L9, which is crucial for membrane pore formation. Coarse-grained MD simulations further showed that the conjugates aggregated in membrane environment and formed more stable toroidal pores with respect to K6L9 alone, suggesting the conjugation of PPA may enhance the membrane-disruption activity of K6L9. Consistent with this, our cellular experiments confirmed that PPA-K6L9 was more toxic to 4 T1 tumor cells than K6L9. This study provides insights into the mechanism by which PS-AMP conjugates disrupt cellular membranes and could aid in the design of more potent AMP conjugates.


Subject(s)
Antimicrobial Peptides , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Lipid Bilayers/chemistry , Cell Membrane/metabolism , Molecular Dynamics Simulation
19.
J Phys Chem A ; 116(51): 12492-502, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23214975

ABSTRACT

The conductivity and nonlinear optical properties of isonaphtothiophene (INT)(n) are investigated by quantum chemical techniques. The conducting properties of (INT)(n) are examined by density of states (DOS) and local DOS analyses. As the chain length n increases, the geometrical conformations of (INT)(n) changed, and the energy gap suddenly decreases. The energy potentials and rotation effect are explored to determine the most preferred stable structures. The geometrical and intrinsic charge character are analyzed by UV/vis/NIR spectra and confirmed by frontier orbital analysis. Interestingly, the (hyper)polarizabilities of (INT)(n) oligomers increase sharply as the chain length increased. Additionally, the importance of the side ß double bonds effect on the structural transformation is detected by a new quantum chemical technique resulting in a potential polymer conductor that can be controlled by modifying its side chains.

20.
Anal Chim Acta ; 1231: 340439, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36220300

ABSTRACT

In this work, personal glucose meter (PGM) as a portable electrochemical device was utilized for sensitive detection of non-glucose targets: N-gene and PCB77, respectively. DNA hydrogel, which can respond to CRISPR/Cas system, was prepared for label-free encapsulating invertase. In the presence of targets, the repeated sequence for the activation of Cas12a was obtained due to the performance of RCA. Unlike "one-to-one" recognition, activated Cas12a can efficiently cleave multiple single-stranded linker DNAs on DNA hydrogels, thus releasing many invertase that can be used for PGM detection. With the amplification of RCA and CRISPR/Cas system, high detection sensitivity can be obtained even using portable PGM. The detection limits for N-gene and PCB77 were 2.6 fM and 3.2 × 10-5 µg/L, respectively, with high specificity and good practical application performance. The developed biosensor can be used for online monitoring with the merit of low cost, easy operation and can be used for various targets analysis.


Subject(s)
Biosensing Techniques , Glucose , Blood Glucose Self-Monitoring , CRISPR-Cas Systems , DNA/genetics , DNA, Single-Stranded , Glucose/analysis , Hydrogels , beta-Fructofuranosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL