Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 695
Filter
Add more filters

Publication year range
1.
Hepatology ; 77(5): 1688-1701, 2023 05 01.
Article in English | MEDLINE | ID: mdl-35844150

ABSTRACT

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) pathologies include steatosis, inflammation, and injury, which may progress to fibrosis, cirrhosis, and cancer. The liver receives ~60% of fatty acids from adipose tissue triglyceride hydrolysis, but the role of this lipolytic pathway in ALD development has not been directly examined in any genetic animal models with selective inactivation of adipose lipolysis. APPROACH AND RESULTS: Using adipose-specific comparative gene identification-58 (CGI-58) knockout (FAT-KO) mice, a model of impaired adipose lipolysis, we show that mice deficient in adipose lipolysis are almost completely protected against ethanol-induced hepatic steatosis and lipid peroxidation when subjected to the National Institute on Alcohol Abuse and Alcoholism chronic and binge ethanol feeding model. This is unlikely due to reduced lipid synthesis because this regimen of ethanol feeding down-regulated hepatic expression of lipogenic genes similarly in both genotypes. In the pair-fed group, FAT-KO relative to control mice displayed increased hepatocyte injury, neutrophil infiltration, and activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) in the liver; and none of these were exacerbated by ethanol feeding. Activation of STAT3 is associated with a marked increase in hepatic leptin receptor mRNA expression and adipose inflammatory cell infiltration. CONCLUSIONS: Our findings establish a critical role of adipose lipolysis in driving hepatic steatosis and oxidative stress during ALD development.


Subject(s)
Fatty Liver , Liver Diseases, Alcoholic , United States , Mice , Animals , Ethanol/pharmacology , Lipolysis , Disease Models, Animal , National Institute on Alcohol Abuse and Alcoholism (U.S.) , Fatty Liver/metabolism , Liver/pathology , Liver Diseases, Alcoholic/metabolism , Mice, Inbred C57BL
2.
Ann Surg Oncol ; 31(3): 1568-1580, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38071721

ABSTRACT

BACKGROUND: Minimally invasive sub-lobectomy is sufficient in treating small early-stage non-small cell lung cancer (NSCLC). However, comparison of the feasibility and oncologic efficacy between robot-assisted thoracoscopic surgery (RATS) and video-assisted thoracoscopic surgery (VATS) in performing sub-lobectomy for early-stage NSCLC patients age 80 years or older is scarce. METHODS: Octogenarians with clinical stage IA NSCLC (tumor size, ≤ 2 cm) undergoing minimally invasive wedge resection or segmentectomy at Shanghai Chest Hospital from 2011 to 2020 were retrospectively reviewed from a prospectively maintained database. Propensity score-matching (PSM) with a RATS versus VATS ratio of 1:4 was performed. Perioperative and long-term outcomes were analyzed. RESULTS: The study identified 594 patients (48 RATS and 546 VATS patients), and PSM resulted in 45 cases in the RATS group and 180 cases in the VATS group. The RATS patients experienced less intraoperative bleeding (60 mL [interquartile range (IQR), 50-100 mL] vs. 80 mL [IQR, 50-100 mL]; P = 0.027) and a shorter postoperative hospital stay (4 days [IQR, 3-5 days] vs. 5 days [IQR, 4-6 days]; P = 0.041) than the VATS patients. The two surgical approaches were comparable concerning other perioperative outcomes and postoperative complications (20.00% vs. 26.11%; P = 0.396). Additionally, during a median follow-up period of 66 months, RATS and VATS achieved comparable 5-year overall survival (90.48% vs. 87.93%; P = 0.891), recurrence-free survival (83.37% vs. 83.18%; P = 0.782), and cumulative incidence of death. Further subgroup comparison also demonstrated comparable long-term outcomes between the two approaches. Finally, multivariate Cox analysis indicated that the surgical approach was not independently correlated with long-term outcomes. CONCLUSIONS: The RATS approach shortened the postoperative hospital stay, reduced intraoperative bleeding by a statistically notable but clinically insignificant amount, and achieved long-term outcomes comparable with VATS in performing sub-lobectomy for octogenarians with early-stage small NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Robotic Surgical Procedures , Robotics , Aged, 80 and over , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Retrospective Studies , Octogenarians , Propensity Score , Pneumonectomy , China , Thoracic Surgery, Video-Assisted/methods
3.
Environ Sci Technol ; 58(5): 2574-2583, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38266484

ABSTRACT

To recover multimedia mercury from coal-fired power plants, a novel N-containing conjugated polymer (polyaniline and polypyrrole) functionalized fly ash was prepared, which could continuously adsorb 99.2% of gaseous Hg0 at a high space velocity of 368,500 h-1 and nearly 100% of aqueous Hg2+ in the solution pH range of 2-12. The adsorption capacities of Hg0 and Hg2+ reach 1.62 and 101.36 mg/g, respectively. Such a kind of adsorbent has good environmental applicability, i.e. good resistance to coexisting O2/NO/SO2 and coexisting Na+/K+/Ca2+/Mg2+/SO42-. This adsorbent has very low specific resistances (6 × 106-5 × 109 Ω·cm) and thus can be easily collected by an electrostatic precipitator under low-voltage (0.1-0.8 kV). The Hg-saturated adsorbent can desorb almost 100% Hg under relatively low temperature (<250 °C). Characterization and theoretical calculations reveal that conjugated-N is the critical site for adsorbing both Hg0 and Hg2+ as well as activating chlorine. Gaseous Hg0 is oxidized and adsorbed in the form of HgXClX(ad), while aqueous Hg2+ is adsorbed to form a complex with conjugated-N, and parts of Hg2+ are reduced to Hg+ by conjugated-N. This adsorbent can be easily large-scale manufactured; thus, this novel solid waste functionalization method is promising to be applied in coal-fired power plants and other Hg-involving industrial scenes.


Subject(s)
Air Pollutants , Mercury , Coal Ash/chemistry , Air Pollutants/analysis , Mercury/analysis , Multimedia , Polymers , Coal , Pyrroles , Gases , Power Plants
4.
Environ Sci Technol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934294

ABSTRACT

Pertechnetate (99TcO4-), a physiologically toxic radioactive anion, is of great concern due to its high mobility in environmental contamination remediation. Although the soluble oxyanion can be photoreduced to sparingly soluble TcO2·nH2O, its effective removal from a strongly acidic aqueous solution remains a challenge. Here, we found that low-crystalline nitrogen-doped titanium oxide (N-TiO2, 0.6 g L-1) could effectively uptake perrhenate (ReO4-, 10 mg L-1, a nonradioactive surrogate for TcO4-) with 50.8% during 360 min under simulated sunlight irradiation at pH 1.0, but P25 and anatase could not. The nitrogen active center formed by trace nitrogen doping in N-TiO2 can promote the separation and transfer of photogenerated carriers. The positive valence band value of N-TiO2 is slightly higher than those of P25 and anatase, which means that the photogenerated holes have a stronger oxidizability. These holes are involved in the formation of strong reducing •CO2- radicals from formic acid oxidation. The active radicals convert ReO4- to Re(VI), which is subsequently disproportionated to Re(IV) and Re(VII). Effective photocatalytic reduction/removal of Re(VII)/Tc(VII) is performed on the material, which may be considered a potential and convenient strategy for technetium decontamination and extraction in a strongly acidic aqueous solution.

5.
Lipids Health Dis ; 23(1): 21, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254149

ABSTRACT

BACKGROUND: Moyamoya disease (MMD) has attracted the attention of scholars because of its rarity and unknown etiology. METHODS: Data for this study were sourced from the Second Affiliated Hospital of Nanchang University. Regression analyses were conducted to examine the association in Lipoprotein [Lp(a)] and MMD. R and IBM SPSS were conducted. RESULTS: A cohort comprising 1012 MMD patients and 2024 controls was established through the propensity score matching method. Compared with controls, MMD patients showed higher median Lp(a) concentrations [18.5 (9.6-37.8) mg/dL vs. 14.9 (7.8-30.5) mg/dL, P < 0.001]. The odds ratios and 95% confidence intervals for Lp(a) were calculated in three models: unadjusted model, model 1 (adjusted for body mass index and systolic blood pressure), and model 2 (adjusted for model 1 plus triglyceride, C-reactive protein, homocysteine, and low-density lipoprotein cholesterol). Results were [1.613 (1.299-2.002), P < 0.001], [1.598 (1.286-1.986), P < 0.001], and [1.661 (1.330-2.074), P < 0.001], respectively. Furthermore, age, sex, or hypertension status had nothing to do with this relationship. CONCLUSIONS: Positive relationship exists between Lp(a) and MMD.


Subject(s)
Lipoprotein(a) , Moyamoya Disease , Humans , Moyamoya Disease/genetics , Body Mass Index , C-Reactive Protein
6.
J Environ Manage ; 351: 119626, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052143

ABSTRACT

Changes in the air temperature tend to indirectly affect soil erosion by influencing rainfall, vegetation growth, economic development, and agricultural activities. In this study, the partial least squares-structural equation model (PLS-SEM) was used to decouple the impacts of temperature change on soil erosion in Northeast China from 2001 to 2019, and the indirect effect of temperature change on the pathways of natural and socioeconomic factors was analyzed. The results showed that temperature increase in Northeast China caused an increase in soil erosion by increasing rainfall and promoting economic development. Under the pathway of natural factors, in spring, the promoting effect on soil erosion under the influence of temperature change on rainfall was greater than the inhibiting effect on soil erosion under by the influence of temperature change on vegetation. In summer, the opposite effect was observed. Under the pathway of natural factors, over time, the promoting effect of temperature increase on soil erosion increased by 22.7%. Under the pathway of socioeconomic factors, temperature change not only aggravated soil erosion by promoting economic development, but also indirectly increased investments in agriculture and water conservation by improving the economy, thus inhibiting soil erosion to a certain extent. Over time, the contribution of temperature change to soil erosion through socioeconomic pathway was reduced by 44.4%. When the pathway of natural factors is compared with that of socioeconomics factors, temperature change imposed a more notable effect on the change in soil erosion through the socioeconomic pathway, indicating that human activities are the driving factors with a greater effect on soil erosion. Based on this, reasonable human intervention is an important means to alleviate soil erosion aggravation caused by rising temperatures.


Subject(s)
Soil Erosion , Soil , Humans , Soil/chemistry , Temperature , Conservation of Natural Resources , China
7.
J Anesth ; 38(1): 77-85, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091035

ABSTRACT

PURPOSE: The purpose of this prospective single blinded randomized controlled trial was to find out whether goal-directed fluid therapy (GDFT) strategy in post-transection period in low central venous pressure (CVP) assisted laparoscopic hepatectomy (LH) has more benefit than traditional fluid strategy. METHODS: Between April 2020 and Dec 2021, patients who were scheduled for laparoscopic liver resection surgery were eligible to participate in the study. Patients were randomly divided into two groups: control group that received traditional fluid strategy in post-transection period in low CVP assisted laparoscopic hepatectomy and GDFT strategy group that received GDFT strategy in post-transection period. The primary outcome parameter is the incidence of postoperative complications. Secondary outcome parameters include perioperative clinical outcomes, postoperative clinical outcomes, length of hospital stay after surgery, postoperative lactic acid, fluids and vasoactive medications during the operation. RESULTS: A total of 159 patients in the control group and 160 patients in the GDFT were included. Two groups had no significant difference in the incidence of postoperative complications including pneumonia (P = 0.34), acute kidney injury (P = 0.72), hepatic insufficiency (P = 0.25), pleural effusion (P = 0.08) and seroperitoneum (P = 1.00), respectively. The amount of perioperative urine output is fewer in GDFT group than in the control group (P = 0.0354), while other perioperative variables and postoperative variables were comparable between two groups. CONCLUSIONS: The results show the implementation of GDFT strategy is not associated with fewer postoperative complications. GDFT strategy did not result in improved outcomes in low CVP-assisted laparoscopic hepatectomy.


Subject(s)
Hepatectomy , Laparoscopy , Humans , Central Venous Pressure , Goals , Prospective Studies , Fluid Therapy/methods , Postoperative Complications/epidemiology
8.
Angew Chem Int Ed Engl ; : e202407151, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860918

ABSTRACT

Developing large-scale monolithic perovskite/silicon tandem devices based on industrial Czochralski silicon wafers will likely have to adopt double-side textured architecture, given their optical benefits and low manufacturing costs. However, the surface engineering strategies that are widely used in solution-processed perovskites to regulate the interface properties are not directly applicable to micrometric textures. Here, we devise a surface passivation strategy by dynamic spray coating (DSC) fluorinated thiophenethylammonium ligands, combining the advantages of providing conformal coverage and suppressing phase conversion on textured surfaces. From the viewpoint of molecular engineering, theoretical calculation and experimental results demonstrate that introducing trifluoromethyl group provide more effective surface passivation through strong interaction and energy alignment by forming a dipole layer. Consequently, the DSC treatment of this bifunctional molecule enables the tandem cells based on industrial silicon wafers to achieve a certified stabilized power conversion efficiency of 30.89%. In addition, encapsulated devices display excellent operational stability by retaining over 97% of their initial performance after 600 h continuous illumination.

9.
Angew Chem Int Ed Engl ; 63(27): e202318782, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38354089

ABSTRACT

High performance solution-processable deep-blue emitters with a Commission International de l'Eclairage (CIE) coordinate of CIEy≤0.08 are highly desired in ultrahigh-definition display. Although, deep-blue materials with hybridized local and charge-transfer (HLCT) excited-state feature are promising candidates, their rigidity and planar molecular structures limit their application in solution-processing technique. Herein, four novel deep-blue solution-processable HLCT emitters were first proposed by attaching rigid imide aliphatic rings as functional units onto the HLCT emitting core. The functional units not only improve solubility, enhance thermal properties and morphological stability of the emitting core, but also promote photoluminescence efficiency, balance charge carrier transport, and inhibit aggregation-caused quenching effect due to the weak electron-withdrawing property as well as steric hindrance. The corresponding solution-processable organic light-emitting diodes (OLEDs) substantiate an unprecedented maximum external quantum efficiency (EQEmax) of 11.5 % with an emission peak at 456 nm and excellent colour purity (full width at half maximum=56 nm and CIEy=0.09). These efficiencies represent the state-of-the-art device performance among the solution-processable blue OLEDs based on the "hot exciton" mechanism. This simple strategy opens up a new avenue for designing highly efficient solution-processable deep-blue organic luminescent materials.

10.
J Am Chem Soc ; 145(1): 676-688, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36538810

ABSTRACT

Exploiting noble-metal-free systems for high-performance photocatalytic CO2 reduction still presents a key challenge, partially due to the long-standing difficulties in developing potent and durable earth-abundant photosensitizers. Therefore, based on the very cheap aluminum metal, we have deployed a systematic series of homoleptic Al(III) photosensitizers featuring 2-pyridylpyrrolide ligands for CO2 photoreduction. The combined studies of steady-state and time-resolved spectroscopy as well as quantum chemical calculations demonstrate that in anerobic CH3CN solutions at room temperature, visible-light excitation of the Al(III) photosensitizers leads to an efficient population of singlet excited states with nanosecond-scale lifetimes and notable emission quantum yields (10-40%). The results of transient absorption spectroscopy further identified the presence of emissive singlet and unexpectedly nonemissive triplet excited states. More importantly, the introduction of methyl groups at the pyrrolide rings can greatly improve the visible-light absorption, reducing power, and durability of the Al(III) photosensitizers. With triethanolamine, BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole), and an Fe(II)-quaterpyridine catalyst, the most methylated Al(III) photosensitizer achieves an apparent quantum efficiency of 2.8% at 450 nm for selective (>99%) CO2-to-CO conversion, which is nearly 28 times that of the unmethylated one (0.1%) under identical conditions. The optimal system realizes a maximum turnover number of 10250 and higher robustness than the systems with Ru(II) and Cu(I) benchmark photosensitizers. Quenching experiments using fluorescence spectroscopy elucidate that the photoinduced electron transfer in the Al(III)-sensitized system follows a reductive quenching pathway. The remarkable tunability and cost efficiency of these Al(III) photosensitizers should allow them as promising components in noble-metal-free systems for solar fuel conversion.

11.
Cancer Immunol Immunother ; 72(3): 783-794, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36056951

ABSTRACT

BACKGROUND: Inflammatory biomarkers in the peripheral blood have been established as predictors for immunotherapeutic efficacy in advanced non-small cell lung cancer (NSCLC). Whether they can also predict major pathological response (MPR) in neoadjuvant setting remains unclear. METHODS: In this multi-center retrospective study, 122 and 92 stage I-IIIB NSCLC patients from six hospitals who received neoadjuvant chemoimmunotherapy followed by surgery were included in the discovery and external validation cohort, respectively. Baseline and on-treatment neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR) and systemic immune-inflammation index (SII) were calculated and associated with MPR. Furthermore, resected tumor samples from 37 patients were collected for RNA-sequencing to investigate the immune-related tumor microenvironment. RESULTS: In both the discovery and validation cohorts, the on-treatment NLR, dNLR, PLR, and SII levels were significantly lower in the patients with MPR versus non-MPR. On-treatment SII remained an independent predictor of MPR in multivariate logistic regression analysis. The area under the curve (AUC) of on-treatment SII for predicting MPR was 0.75 (95%CI, 0.67-0.84) in the discovery cohort. Moreover, the predictive value was further improved by combining the on-treatment SII and radiological tumor regression data, demonstrating an AUC of 0.82 (95%CI, 0.74-0.90). The predictive accuracy was validated in the external cohort. Compared with the SII-high group, patients with SII-Low were associated with the activated B cell receptor signaling pathway and a higher intratumoral immune cell infiltration level. CONCLUSIONS: On-treatment SII was independently associated with MPR in NSCLC patients receiving neoadjuvant chemoimmunotherapy. Further prospective studies are warranted.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Retrospective Studies , Neoadjuvant Therapy , Biomarkers , Inflammation , Neutrophils/pathology , Prognosis , Tumor Microenvironment
12.
BMC Med ; 21(1): 275, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37501168

ABSTRACT

BACKGROUND: Homozygous familial hypercholesterolemia (HoFH) is an orphan metabolic disease characterized by extremely elevated low-density lipoprotein cholesterol (LDL-C), xanthomas, aortic stenosis, and premature atherosclerotic cardiovascular disease (ASCVD). In addition to LDL-C, studies in experimental models and small clinical populations have suggested that other types of metabolic molecules might also be risk factors responsible for cardiovascular complications in HoFH, but definitive evidence from large-scale human studies is still lacking. Herein, we aimed to comprehensively characterize the metabolic features and risk factors of human HoFH by using metabolic systems strategies. METHODS: Two independent multi-center cohorts with a total of 868 individuals were included in the cross-sectional study. First, comprehensive serum metabolome/lipidome-wide analyses were employed to identify the metabolomic patterns for differentiating HoFH patients (n = 184) from heterozygous FH (HeFH, n = 376) and non-FH (n = 100) subjects in the discovery cohort. Then, the metabolomic patterns were verified in the validation cohort with 48 HoFH patients, 110 HeFH patients, and 50 non-FH individuals. Subsequently, correlation/regression analyses were performed to investigate the associations of clinical/metabolic alterations with typical phenotypes of HoFH. In the prospective study, a total of 84 HoFH patients with available follow-up were enrolled from the discovery cohort. Targeted metabolomics, deep proteomics, and random forest approaches were performed to investigate the ASCVD-associated biomarkers in HoFH patients. RESULTS: Beyond LDL-C, various bioactive metabolites in multiple pathways were discovered and validated for differentiating HoFH from HoFH and non-FH. Our results demonstrated that the inflammation and oxidative stress-related metabolites in the pathways of arachidonic acid and lipoprotein(a) metabolism were independently associated with the prevalence of corneal arcus, xanthomas, and supravalvular/valvular aortic stenosis in HoFH patients. Our results also identified a small marker panel consisting of high-density lipoprotein cholesterol, lipoprotein(a), apolipoprotein A1, and eight proinflammatory and proatherogenic metabolites in the pathways of arachidonic acid, phospholipid, carnitine, and sphingolipid metabolism that exhibited significant performances on predicting first ASCVD events in HoFH patients. CONCLUSIONS: Our findings demonstrate that human HoFH is associated with a variety of metabolic abnormalities and is more complex than previously known. Furthermore, this study provides additional metabolic alterations that hold promise as residual risk factors in HoFH population.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Homozygous Familial Hypercholesterolemia , Hyperlipoproteinemia Type II , Xanthomatosis , Humans , Cholesterol, LDL , Hyperlipoproteinemia Type II/complications , Hyperlipoproteinemia Type II/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/complications , Prospective Studies , Cross-Sectional Studies , Arachidonic Acid , Risk Factors , Phenotype , Heart Disease Risk Factors , Atherosclerosis/epidemiology , Atherosclerosis/complications , Lipoprotein(a) , Xanthomatosis/complications
13.
Ann Surg Oncol ; 30(12): 7549-7560, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37587362

ABSTRACT

BACKGROUND: Neoadjuvant chemoimmunotherapy treatment (NCIT) has achieved great success for non-small cell lung cancer (NSCLC); however, the intrinsic mechanism underlying this treatment remains unclear. METHODS: Thirty-two patients with stage IIA-IIIC NSCLC who underwent surgery after NCIT were included in this retrospective study. Multiplex immunofluorescence (mIF) staining and image analysis assays were performed on the samples collected before and after NCIT for each patient. RNA analyses was applied to confirm the mIF results. RESULTS: Among the enrolled patients, 14 achieved major pathological response or pathological complete response (pCR) and were defined as the 'response' group, whereas 18 patients did not respond well to NCIT and were defined as the 'nonresponse' group. The results of the mIF assays revealed an overall increase in tumor immune lymphocytes (TILs) after NCIT in the stroma area (p = 0.03) rather than the tumor area (p = 0.86). The percentage of CD8+ T cells and tertiary lymphoid structure counts in both the response and nonresponse groups increased significantly after NCIT compared with before NCIT. CD3+ T cells and FOXP3+ cells decreased significantly in the response group but remained unchanged or increased in the nonresponse group. A comparison of the response and nonresponse groups showed that CD3, FOXP3+ and CD8+/PD-1+ cells before NCIT may serve as predictors of the response to neoadjuvant immunotherapy. The RNA analyses confirmed the mIF results that TILs were elevated after NCIT. CONCLUSIONS: The infiltration of immune cells before NCIT was correlated with pathologic complete response, which enhanced the TILs as a promising predictor for selecting patients who were more likely to benefit from NCIT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Neoadjuvant Therapy , Retrospective Studies , Lymphocytes/pathology , Immunotherapy/methods , Forkhead Transcription Factors , RNA , Lymphocytes, Tumor-Infiltrating
14.
Pharmacol Res ; 198: 106992, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977237

ABSTRACT

Major pathologic remission (MPR, residual tumor <10%) is a promising clinical endpoint for prognosis analysis in patients with lung cancer receiving pre-operative PD-1 blockade therapy. Most of the current biomarkers for predicting MPR such as PD-L1 and tumor mutation burden (TMB) need to be obtained invasively. They cannot overcome the spatiotemporal heterogeneity or provide dynamic monitoring solutions. Radiomics and artificial intelligence (AI) models provide a practical tool enabling non-invasive follow-up observation of tumor structural information through high-throughput data analysis. Currently, AI-based models mainly focus on the single baseline scan or pipeline, namely sole radiomics or deep learning (DL). This work merged the delta-radiomics based on the slope of classic radiomics indexes within a time interval and the features extracted by deep networks from the subtraction between the baseline and follow-up images. The subtracted images describing the tumor changes were based on the transformation generated by registration. Stepwise optimization of components was performed by repeating experiments among various combinations of DL networks, registration methods, feature selection algorithms, and classifiers. The optimized model could predict MPR with a cross-validation AUC of 0.91 and an external validation AUC of 0.85. A core set of 27 features (eight classic radiomics, 15 delta-radiomics, one classic DL features, and three delta-DL features) was identified. The changes in delta-radiomics indexes during the treatment were fitted with mathematic models. The fitting results revealed that over half of the features were of non-linear dynamics. Therefore, non-linear modifications were made on eight features by replacing the original features with non-linear fitting parameters, and the modified model achieved an improved power. The dynamic hybrid model serves as a novel and promising tool to predict the response of lesions to PD-1 blockade, which implies the importance of introducing the non-linear dynamic effects and DL approaches to the original delta-radiomics in the future.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , Artificial Intelligence , Algorithms
15.
Nanotechnology ; 34(24)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36881863

ABSTRACT

Low-dimensional tin selenide nanoribbons (SnSe NRs) show a wide range of applications in optoelectronics fields such as optical switches, photodetectors, and photovoltaic devices due to the suitable band gap, strong light-matter interaction, and high carrier mobility. However, it is still challenging to grow high-quality SnSe NRs for high-performance photodetectors so far. In this work, we successfully synthesized high-quality p-type SnSe NRs by chemical vapor deposition and then fabricated near-infrared photodetectors. The SnSe NR photodetectors show a high responsivity of 376.71 A W-1, external quantum efficiency of 5.65 × 104%, and detectivity of 8.66 × 1011Jones. In addition, the devices show a fast response time with rise and fall time of up to 43µs and 57µs, respectively. Furthermore, the spatially resolved scanning photocurrent mapping shows very strong photocurrent at the metal-semiconductor contact regions, as well as fast generation-recombination photocurrent signals. This work demonstrated that p-type SnSe NRs are promising material candidates for broad-spectrum and fast-response optoelectronic devices.

16.
Health Qual Life Outcomes ; 21(1): 122, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964348

ABSTRACT

OBJECTIVE: To develop a mapping algorithm for generating the Short Form Six-Dimension (SF-6D) utility score based on the Functional Assessment of Cancer Therapy-Lung (FACT-L) of lung cancer patients. METHODS: Data were collected from 625 lung cancer patients in mainland China. The Spearman rank correlation coefficient and principal component analysis were used to evaluate the conceptual overlap between the FACT-L and SF-6D. Five model specifications and four statistical techniques were used to derive mapping algorithms, including ordinary least squares (OLS), Tobit and beta-mixture regression models, which were used to directly estimate health utility, and ordered probit regression was used to predict the response level. The prediction performance was evaluated using the correlations between the root mean square error (RMSE), mean absolute error (MAE), concordance correlation coefficient (CCC), Akaike information criterion (AIC) and Bayesian information criterion (BIC) and the observed and predicted SF-6D scores. A five-fold cross-validation method was used to test the universality of each model and select the best model. RESULTS: The average FACT-L score was 103.024. The average SF-6D score was 0.774. A strong correlation was found between FACT-L and SF-6D scores (ρ = 0.797). The ordered probit regression model with the total score of each dimension and its square term, as well as age and sex as covariates, was most suitable for mapping FACT-L to SF-6D scores (5-fold cross-validation: RMSE = 0.0854; MAE = 0.0655; CCC = 0.8197; AEs > 0.1 (%) = 53.44; AEs > 0.05 (%) = 21.76), followed by beta-mixture regression for direct mapping. The Bland‒Altman plots showed that the ordered probit regression M5 had the lowest proportion of prediction scores outside the 95% agreement limit (-0.166, 0.163) at 4.96%. CONCLUSIONS: The algorithm reported in this paper enables lung cancer data from the FACT-L to be mapped to the utility of the SF-6D. The algorithm allows the calculation of quality-adjusted life years for cost-utility analyses of lung cancer.


Subject(s)
Lung Neoplasms , Quality of Life , Humans , Bayes Theorem , Surveys and Questionnaires , China , Algorithms , Lung
17.
Oral Dis ; 29(8): 3408-3419, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35722675

ABSTRACT

OBJECTIVES: To explore the effect of exosomal miR-126 derived from stem cells from the apical papilla (SCAPs) under hypoxia on human umbilical vein endothelial cell (HUVEC) angiogenesis. METHODS: miR-126 mimics plasmids were used to upregulate miR-126 in SCAPs. Internalization of PKH26-labeled exosomes was examined by fluorescent microscopy. CCK-8 assay, Transwell assay, scratch assay, tube formation assay, and Matrigel plug assay were performed to detect the effects of exosomes on the angiogenic ability of HUVECs. The luciferase reporter assay and rescue assay were performed to examine the relationship between miR-126 and sprouty-related, EVH1 domain-containing protein 1 (SPRED1). The involvement of SPRED1 and the extracellular signal-regulated kinase (ERK) signaling pathway was evaluated by western blotting. RESULTS: miR-126 expression was upregulated in SCAPs and in SCAP-derived exosomes under hypoxia. miR-126 expression was increased in HUVECs when cocultured with SCAP-derived exosomes. Induced overexpression of miR-126 in hypoxic SCAPs and secreted exosomes resulted in enhanced angiogenesis both in vitro and in vivo. Western blot analysis revealed that miR-126-mediated SPRED1 downregulation induced activation of ERK signaling. CONCLUSIONS: Under hypoxic conditions, exosomes derived from SCAPs can promote HUVEC angiogenesis through expression of miR-126, which subsequently suppresses SPRED1 and activates the ERK signaling pathway.


Subject(s)
Exosomes , MicroRNAs , Humans , MicroRNAs/metabolism , Exosomes/metabolism , Stem Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Cell Proliferation , Hypoxia/metabolism
18.
Skin Res Technol ; 29(10): e13497, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881057

ABSTRACT

BACKGROUND: Extramammary Paget's disease (EMPD) is a rare cutaneous malignant tumor with a high recurrence rate after surgery. However, the genetic and epigenetic alterations underlying its pathogenesis remain unknown. DNA methylation is an important epigenetic modification involved in many biological processes. METHODS: In this study, enzymatic methyl-sequencing (EM-seq) technique was used to investigate the landscape of genome-wide DNA methylation from three pairs of tumor tissues and adjacent tissues of patients with EMPD. Additionally, we conducted histopathological examinations to assess the expression of fatty acid-binding protein 5 (FABP5) in another three paired samples from EMPD patients. RESULTS: The cluster analysis showed the good quality of the samples. A differential methylation region (DMR) heat map was used to quantitatively characterize genome-wide methylation differences between tumors and controls. Global DNA methylation level is lower in EMPD tissue compared to matched controls, indicating that DNA methylation discriminates between tumor and normal skin. And the top hypomethylation gene on the promoter region in tumor tissues was FABP5 on chromosome 8 with 38.44% decreased median methylation. We next identified the expression of FABP5 in paired tumors and adjacent tissues in three additional patients with EMPD. Immunofluorescence results showed FABP5 highly expressed in tumor tissues and co-located with CK7, CK20 and EMA. GO and KEGG enrichment analysis showed DMR genes on promoter are mainly enriched in the calcium ion transport, GTPase mediated signal transduction, Rap1 signaling pathway and GnRH signaling pathway. CONCLUSION: Taken together, our findings provide the first description of the whole genome methylation map of EMPD and identify FABP5 as a pathogenic target of EMPD.


Subject(s)
Paget Disease, Extramammary , Skin Neoplasms , Humans , Paget Disease, Extramammary/genetics , Paget Disease, Extramammary/metabolism , Paget Disease, Extramammary/pathology , Methylation , Skin Neoplasms/pathology , Epigenesis, Genetic/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 117(6): 3103-3113, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31980518

ABSTRACT

Neutrophils are the most abundant immune cells found in actively inflamed joints of patients with rheumatoid arthritis (RA), and most animal models for RA depend on neutrophils for the induction of joint inflammation. Exogenous IL-4 and IL-13 protect mice from antibody-mediated joint inflammation, although the mechanism is not understood. Neutrophils display a very strong basal expression of STAT6, which is responsible for signaling following exposure to IL-4 and IL-13. Still, the role of IL-4 and IL-13 in neutrophil biology has not been well studied. This can be explained by the low neutrophil surface expression of the IL-4 receptor α-chain (IL-4Rα), essential for IL-4- and IL-13-induced STAT6 signaling. Here we identify that colony stimulating factor 3 (CSF3), released during acute inflammation, mediates potent STAT3-dependent neutrophil IL-4Rα up-regulation during sterile inflammatory conditions. We further demonstrate that IL-4 limits neutrophil migration to inflamed joints, and that CSF3 combined with IL-4 or IL-13 results in a prominent neutrophil up-regulation of the inhibitory Fcγ receptor (FcγR2b). Taking these data together, we demonstrate that the IL-4 and CSF3 pathways are linked and play important roles in regulating proinflammatory neutrophil behavior.


Subject(s)
Arthritis/metabolism , Interleukin-4 , Neutrophil Infiltration/physiology , Neutrophils/metabolism , Receptors, IgG/metabolism , Animals , Disease Models, Animal , Interleukin-4/genetics , Interleukin-4/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
20.
Pestic Biochem Physiol ; 191: 105373, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36963942

ABSTRACT

Tobacco mosaic disease is a worldwide viral disease that can cause huge economic losses. Plant immune inducers have become the main force in the prevention and treatment of viral disease own to their high efficiency and rapid effect. However, since tobacco mosaic disease can occur at any point in the plant growth cycle, a single application period cannot guarantee the completely management. In this study, an extract from Paecilomyces variotii named ZhiNengCong (ZNC), which can fight against tobacco mosaic disease with 65% control effect, and improve the promotion of tobacco stem girth, was selected from five commercial antiviral medicines, and a sustained release sodium alginate (Alg)-based ZNC (ZNC@Alg) was prepared by physical absorption. ZNC@Alg, who contains only 5 mg/mL ZNC, can release ZNC for 7 consecutive days, and displayed an enhanced effect in inducing the PAL-mediated salicylic acid signaling pathway activation to participate in the inhibition of green fluorescent protein (GFP)-tagged tobacco mosaic virus (TMV-GFP) infection, even after 7 days of the application. Notably, field experiments showed that the control effect of ZNC@Alg was up to 88%, which was significantly better than that of ZNC with the same concentration (10 µg per plant). In addition, ZNC@Alg exhibited a stronger growth-promoting effect than ZNC, which significantly increased the wet weight of tobacco. Taken together, we screened out a plant immune inducer ZNC that can effectively inhibit tobacco virus disease, and created ZNC@Alg with higher control effect and growth promotion effect, laying a foundation for effective field management of tobacco mosaic disease.


Subject(s)
Tobacco Mosaic Virus , Virus Diseases , Antiviral Agents/pharmacology , Alginates/pharmacology , Plant Diseases/prevention & control , Nicotiana
SELECTION OF CITATIONS
SEARCH DETAIL