Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837708

ABSTRACT

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


Subject(s)
ATP-Binding Cassette Transporters , Cathepsin D , Lysosomes , Retinal Pigment Epithelium , Stargardt Disease , Cathepsin D/metabolism , Cathepsin D/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Stargardt Disease/metabolism , Stargardt Disease/pathology , Stargardt Disease/genetics , Animals , Humans , Mice , Lysosomes/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Induced Pluripotent Stem Cells/metabolism , Mice, Knockout , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics
2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782457

ABSTRACT

Lipofuscin granules enclose mixtures of cross-linked proteins and lipids in proportions that depend on the tissue analyzed. Retinal lipofuscin is unique in that it contains mostly lipids with very little proteins. However, retinal lipofuscin also presents biological and physicochemical characteristics indistinguishable from conventional granules, including indigestibility, tendency to cause lysosome swelling that results in rupture or defective functions, and ability to trigger NLRP3 inflammation, a symptom of low-level disruption of lysosomes. In addition, like conventional lipofuscins, it appears as an autofluorescent pigment, considered toxic waste, and a biomarker of aging. Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), whereby it interferes with the support of the neuroretina. RPE cell death is the primary cause of blindness in the most prevalent incurable genetic and age-related human disorders, Stargardt disease and age-related macular degeneration (AMD), respectively. Although retinal lipofuscin is directly linked to the cell death of the RPE in Stargardt, the extent to which it contributes to AMD is a matter of debate. Nonetheless, the number of AMD clinical trials that target lipofuscin formation speaks for the potential relevance for AMD as well. Here, we show that retinal lipofuscin triggers an atypical necroptotic cascade, amenable to pharmacological intervention. This pathway is distinct from canonic necroptosis and is instead dependent on the destabilization of lysosomes. We also provide evidence that necroptosis is activated in aged human retinas with AMD. Overall, this cytotoxicity mechanism may offer therapeutic targets and markers for genetic and age-related diseases associated with lipofuscin buildups.


Subject(s)
Intracellular Membranes/metabolism , Lipofuscin/pharmacology , Lysosomes/metabolism , Necroptosis/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Aging , Alcohol Oxidoreductases , Animals , Cell Death , Humans , Lipofuscin/metabolism , Macular Degeneration/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Retina/metabolism , Retinal Pigment Epithelium/metabolism
3.
FASEB J ; 36(5): e22309, 2022 05.
Article in English | MEDLINE | ID: mdl-35471581

ABSTRACT

RAB28 is a farnesylated, ciliary G-protein. Patient variants in RAB28 are causative of autosomal recessive cone-rod dystrophy (CRD), an inherited human blindness. In rodent and zebrafish models, the absence of Rab28 results in diminished dawn, photoreceptor, outer segment phagocytosis (OSP). Here, we demonstrate that Rab28 is also required for dusk peaks of OSP, but not for basal OSP levels. This study further elucidated the molecular mechanisms by which Rab28 controls OSP and inherited blindness. Proteomic profiling identified factors whose expression in the eye or whose expression at dawn and dusk peaks of OSP is dysregulated by loss of Rab28. Notably, transgenic overexpression of Rab28, solely in zebrafish cones, rescues the OSP defect in rab28 KO fish, suggesting rab28 gene replacement in cone photoreceptors is sufficient to regulate Rab28-OSP. Rab28 loss also perturbs function of the visual cycle as retinoid levels of 11-cRAL, 11cRP, and atRP are significantly reduced in larval and adult rab28 KO retinae (p < .05). These data give further understanding on the molecular mechanisms of RAB28-associated CRD, highlighting roles of Rab28 in both peaks of OSP, in vitamin A metabolism and in retinoid recycling.


Subject(s)
Proteomics , Zebrafish , Animals , Blindness/metabolism , Humans , Phagocytosis , Retinal Cone Photoreceptor Cells/metabolism , Retinoids/metabolism , Zebrafish/genetics , Zebrafish/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
4.
FASEB J ; 34(3): 3693-3714, 2020 03.
Article in English | MEDLINE | ID: mdl-31989709

ABSTRACT

Stargardt disease (STGD1), known as inherited retinal dystrophy, is caused by ABCA4 mutations. The pigmented Abca4-/- mouse strain only reflects the early stage of STGD1 since it is devoid of retinal degeneration. This blue light-illuminated pigmented Abca4-/- mouse model presented retinal pigment epithelium (RPE) and photoreceptor degeneration which was similar to the advanced STGD1 phenotype. In contrast, wild-type mice showed no RPE degeneration after blue light illumination. In Abca4-/- mice, the acute blue light diminished the mean autofluorescence (AF) intensity in both fundus short-wavelength autofluorescence (SW-AF) and near-infrared autofluorescence (NIR-AF) modalities correlating with reduced levels of bisretinoid-fluorophores. Blue light-induced RPE cellular damage preceded the photoreceptors loss. In late-stage STGD1-like patient and blue light-illuminated Abca4-/- mice, lipofuscin and melanolipofuscin granules were found to contribute to NIR-AF, indicated by the colocalization of lipofuscin-AF and NIR-AF under the fluorescence microscope. In this mouse model, the correlation between in vivo and ex vivo assessments revealed histological characteristics of fundus AF abnormalities. The flecks which are hyper AF in both SW-AF and NIR-AF corresponded to the subretinal macrophages fully packed with pigment granules (lipofuscin, melanin, and melanolipofuscin). This mouse model, which has the phenotype of advanced STGD1, is important to understand the histopathology of Stargardt disease.


Subject(s)
Retina/diagnostic imaging , Stargardt Disease/diagnostic imaging , Stargardt Disease/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Chromatography, High Pressure Liquid , Electroretinography , Female , Fluorescent Antibody Technique , Humans , In Vitro Techniques , Lipofuscin/metabolism , Male , Melanins/metabolism , Mice , Microscopy, Fluorescence , Retina/metabolism , Tomography, Optical Coherence
5.
Proc Natl Acad Sci U S A ; 115(47): E11120-E11127, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30397118

ABSTRACT

Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4-/- mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk-/- but not Abca4-/- mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4-/- background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4-/- mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Macular Degeneration/congenital , Photoreceptor Cells/metabolism , Retinal Pigment Epithelium/metabolism , Retinaldehyde/metabolism , ATP-Binding Cassette Transporters/biosynthesis , Animals , Cells, Cultured , Disease Models, Animal , Lipofuscin/metabolism , Lysosomes/metabolism , Macular Degeneration/genetics , Macular Degeneration/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Phagocytosis/immunology , Retina/pathology , Retinal Degeneration/pathology , Rhodopsin/metabolism , Stargardt Disease , c-Mer Tyrosine Kinase/genetics
6.
Proc Natl Acad Sci U S A ; 114(15): 3987-3992, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28348233

ABSTRACT

Recessive Stargardt macular degeneration (STGD1) is caused by mutations in the gene for the ABCA4 transporter in photoreceptor outer segments. STGD1 patients and Abca4-/- (STGD1) mice exhibit buildup of bisretinoid-containing lipofuscin pigments in the retinal pigment epithelium (RPE), increased oxidative stress, augmented complement activation and slow degeneration of photoreceptors. A reduction in complement negative regulatory proteins (CRPs), possibly owing to bisretinoid accumulation, may be responsible for the increased complement activation seen on the RPE of STGD1 mice. CRPs prevent attack on host cells by the complement system, and complement receptor 1-like protein y (CRRY) is an important CRP in mice. Here we attempted to rescue the phenotype in STGD1 mice by increasing expression of CRRY in the RPE using a gene therapy approach. We injected recombinant adeno-associated virus containing the CRRY coding sequence (AAV-CRRY) into the subretinal space of 4-wk-old Abca4-/- mice. This resulted in sustained, several-fold increased expression of CRRY in the RPE, which significantly reduced the complement factors C3/C3b in the RPE. Unexpectedly, AAV-CRRY-treated STGD1 mice also showed reduced accumulation of bisretinoids compared with sham-injected STGD1 control mice. Furthermore, we observed slower photoreceptor degeneration and increased visual chromophore in 1-y-old AAV-CRRY-treated STGD1 mice. Rescue of the STGD1 phenotype by AAV-CRRY gene therapy suggests that complement attack on the RPE is an important etiologic factor in STGD1. Modulation of the complement system by locally increasing CRP expression using targeted gene therapy represents a potential treatment strategy for STGD1 and other retinopathies associated with complement dysregulation.


Subject(s)
Complement C3/metabolism , Macular Degeneration/congenital , Photoreceptor Cells, Vertebrate/pathology , Receptors, Complement/metabolism , Retinal Pigment Epithelium/metabolism , ATP-Binding Cassette Transporters/genetics , Animals , Autophagy , Dependovirus/genetics , Disease Models, Animal , Gene Expression Regulation , Injections, Intraocular , Lipofuscin/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice, Inbred BALB C , Mice, Mutant Strains , Oxidative Stress , Photoreceptor Cells, Vertebrate/metabolism , Receptors, Complement/genetics , Receptors, Complement 3b , Retinal Pigment Epithelium/pathology , Retinoids/metabolism , Stargardt Disease
7.
Proc Natl Acad Sci U S A ; 111(14): E1402-8, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24706818

ABSTRACT

Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (ß-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of ß-CD. Importantly, ß-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of ß-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of ß-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs.


Subject(s)
Lipofuscin/metabolism , Retinal Pigment Epithelium/metabolism , Retinoids/metabolism , beta-Cyclodextrins/metabolism , Animals , Binding Sites , Chromatography, High Pressure Liquid , Computer Simulation , Fluorescence , In Vitro Techniques , Lipofuscin/isolation & purification , Mice , Mice, Knockout , Oxidation-Reduction , Retinoids/isolation & purification
8.
J Biol Chem ; 289(13): 9113-20, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24550392

ABSTRACT

Age-related macular degeneration (AMD) is a common central blinding disease of the elderly. Homozygosity for a sequence variant causing Y402H and I62V substitutions in the gene for complement factor H (CFH) is strongly associated with risk of AMD. CFH, secreted by many cell types, including those of the retinal pigment epithelium (RPE), is a regulatory protein that inhibits complement activation. Recessive Stargardt maculopathy is another central blinding disease caused by mutations in the gene for ABCA4, a transporter in photoreceptor outer segments (OS) that clears retinaldehyde and prevents formation of toxic bisretinoids. Photoreceptors daily shed their distal OS, which are phagocytosed by the RPE cells. Here, we investigated the relationship between the CFH haplotype of human RPE (hRPE) cells, exposure to OS containing bisretinoids, and complement activation. We show that hRPE cells of the AMD-predisposing CFH haplotype (HH402/VV62) are attacked by complement following exposure to bisretinoid-containing Abca4(-/-) OS. This activation was dependent on factor B, indicating involvement of the alternative pathway. In contrast, hRPE cells of the AMD-protective CFH haplotype (YY402/II62) showed no complement activation following exposure to either Abca4(-/-) or wild-type OS. The AMD-protective YY402/II62 hRPE cells were more resistant to the membrane attack complex, whereas HH402/VV62 hRPE cells showed significant membrane attack complex deposition following ingestion of Abca4(-/-) OS. These results suggest that bisretinoid accumulation in hRPE cells stimulates activation and dysregulation of complement. Cells with an intact complement negative regulatory system are protected from complement attack, whereas cells with reduced CFH synthesis because of the Y402H and I62V substitutions are vulnerable to disease.


Subject(s)
Complement Factor H/genetics , Complement Factor H/metabolism , Haplotypes , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Retinoids/metabolism , ATP-Binding Cassette Transporters/deficiency , Animals , Cell Membrane/metabolism , Complement C3b/metabolism , Complement Factor H/biosynthesis , Genetic Predisposition to Disease/genetics , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Photoreceptor Cell Outer Segment/pathology , Retinal Pigment Epithelium/pathology
9.
PLoS One ; 19(5): e0300584, 2024.
Article in English | MEDLINE | ID: mdl-38709779

ABSTRACT

Though rod and cone photoreceptors use similar phototransduction mechanisms, previous model calculations have indicated that the most important differences in their light responses are likely to be differences in amplification of the G-protein cascade, different decay rates of phosphodiesterase (PDE) and pigment phosphorylation, and different rates of turnover of cGMP in darkness. To test this hypothesis, we constructed TrUx;GapOx rods by crossing mice with decreased transduction gain from decreased transducin expression, with mice displaying an increased rate of PDE decay from increased expression of GTPase-activating proteins (GAPs). These two manipulations brought the sensitivity of TrUx;GapOx rods to within a factor of 2 of WT cone sensitivity, after correcting for outer-segment dimensions. These alterations did not, however, change photoreceptor adaptation: rods continued to show increment saturation though at a higher background intensity. These experiments confirm model calculations that rod responses can mimic some (though not all) of the features of cone responses after only a few changes in the properties of transduction proteins.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Transducin , Animals , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice , Transducin/metabolism , Transducin/genetics , Retina/metabolism , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics
10.
Nat Commun ; 15(1): 5970, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043666

ABSTRACT

Vacuolar protein sorting 35 (VPS35), the core component of the retromer complex which regulates endosomal trafficking, is genetically linked with Parkinson's disease (PD). Impaired vision is a common non-motor manifestation of PD. Here, we show mouse retinas with VPS35-deficient rods exhibit synapse loss and visual deficit, followed by progressive degeneration concomitant with the emergence of Lewy body-like inclusions and phospho-α-synuclein (P-αSyn) aggregation. Ultrastructural analyses reveal VPS35-deficient rods accumulate aggregates in late endosomes, deposited as lipofuscins bound to P-αSyn. Mechanistically, we uncover a protein network of VPS35 and its interaction with HSC70. VPS35 deficiency promotes sequestration of HSC70 and P-αSyn aggregation in late endosomes. Microglia which engulf lipofuscins and P-αSyn aggregates are activated, displaying autofluorescence, observed as bright dots in fundus imaging of live animals, coinciding with pathology onset and progression. The Rod∆Vps35 mouse line is a valuable tool for further mechanistic investigation of αSyn lesions and retinal degenerative diseases.


Subject(s)
Retinal Degeneration , Vesicular Transport Proteins , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Mice , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Endosomes/metabolism , Microglia/metabolism , Microglia/pathology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Retina/metabolism , Retina/pathology , Mice, Knockout , Disease Models, Animal , Humans , Synapses/metabolism , Synapses/pathology , Male
11.
Cells ; 11(21)2022 11 02.
Article in English | MEDLINE | ID: mdl-36359858

ABSTRACT

Recessive Stargardt disease (STGD1) is an inherited retinopathy caused by mutations in the ABCA4 gene. The ABCA4 protein is a phospholipid-retinoid flippase in the outer segments of photoreceptors and the internal membranes of retinal pigment epithelial (RPE) cells. Here, we show that RPE cells derived via induced pluripotent stem-cell from a molecularly and clinically diagnosed STGD1 patient exhibited reduced ABCA4 protein and diminished activity compared to a normal subject. Consequently, STGD1 RPE cells accumulated intracellular autofluorescence-lipofuscin and displayed increased complement C3 activity. The level of C3 inversely correlated with the level of CD46, an early negative regulator of the complement cascade. Persistent complement dysregulation led to deposition of the membrane attack complex on the surface of RPE cells, decrease in transepithelial resistance, and subsequent cell death. These findings are strong evidence of complement-mediated RPE cell damage in STGD1, in the absence of photoreceptors, caused by reduced CD46 regulatory protein.


Subject(s)
Complement Membrane Attack Complex , Retinal Pigment Epithelium , Humans , Stargardt Disease , Complement Membrane Attack Complex/metabolism , Retinal Pigment Epithelium/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Complement System Proteins/metabolism , Cell Death
12.
Transl Vis Sci Technol ; 11(3): 33, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35348597

ABSTRACT

Purpose: Modern molecular genetics has revolutionized gene discovery, genetic diagnoses, and precision medicine yet many patients remain unable to benefit from these advances as disease-causing variants remain elusive for up to half of Mendelian genetic disorders. Patient-derived induced pluripotent stem (iPS) cells and transcriptomics were used to identify the fate of unsolved ABCA4 alleles in patients with Stargardt disease. Methods: Multiple independent iPS lines were generated from skin biopsies of three patients with Stargardt disease harboring a single identified pathogenic ABCA4 variant. Derived retinal pigment epithelial cells (dRPE) from a normal control and patient cells were subjected to RNA-Seq on the Novaseq6000 platform, analyzed using DESeq2 with calculation of allele specific imbalance from the pathogenic or a known linked variant. Protein analysis was performed using the automated Simple Western system. Results: Nine dRPE samples were generated, with transcriptome analysis on eight. Allele-specific expression indicated normal transcripts expressed from splice variants albeit at low levels, and missense transcripts expressed at near-normal levels. Corresponding protein was not easily detected. Patient phenotype correlation indicated missense variants expressed at high levels have more deleterious outcomes. Transcriptome analysis suggests mitochondrial membrane biodynamics and the unfolded protein response pathway may be relevant in Stargardt disease. Conclusions: Patient-specific iPS-derived RPE cells set the stage to assess non-expressing variants in difficult-to-detect genomic regions using easily biopsied tissue. Translational Relevance: This "Disease in a Dish" approach is likely to enhance the ability of patients to participate in and benefit from clinical trials while providing insights into perturbations in RPE biology.


Subject(s)
ATP-Binding Cassette Transporters , Epithelial Cells , ATP-Binding Cassette Transporters/genetics , Humans , Phenotype , Retinal Pigments , Stargardt Disease
13.
Synapse ; 63(8): 625-35, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19347959

ABSTRACT

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of N-methyl-D-aspartate receptors (NMDAR) has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate. NAAG is a neuropeptide that is an NMDAR antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDAR activation. To manipulate the expression of GCP II, LoxP sites were inserted flanking exons 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N > 200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory.


Subject(s)
Glutamate Carboxypeptidase II/deficiency , Heterozygote , Mutation/genetics , Phenotype , Acoustic Stimulation/methods , Animals , Behavior, Animal/physiology , Exons/genetics , Gene Expression/genetics , Glutamate Carboxypeptidase II/genetics , Glutamate Carboxypeptidase II/metabolism , Interpersonal Relations , Memory/physiology , Mice , Mice, Knockout , Motor Activity/genetics , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Sensory Gating/genetics , Space Perception/physiology
14.
Hum Gene Ther ; 30(5): 590-600, 2019 05.
Article in English | MEDLINE | ID: mdl-30381971

ABSTRACT

The recent approval in the United States of the first adeno-associated viral (AAV) vector for the treatment of an inherited retinal degeneration validates this approach for the treatment of many other diseases. A major limiting factor continues to be the size restriction of the AAV transgene at under 5 kb. Stargardt disease is the most prevalent form of recessively inherited blindness and is caused by mutations in ABCA4, the gene that codes for ATP-binding cassette transporter protein family member 4, which has a coding sequence length of 6.8 kb. Dual vector approaches increase the capacity of AAV gene therapy, but at the cost of substantially reduced levels of target protein, which may be insufficient to achieve a therapeutic effect. Here we show that the efficacy of recombination of dual vectors is dependent on the length of DNA overlap between two transgenes. With optimized recombination, full-length ABCA4 protein is expressed in the photoreceptor outer segments of Abca4-/- mice at levels sufficient to reduce bisretinoid formation and correct the autofluorescent phenotype. These observations support a dual vector approach in future clinical trials using AAV gene therapy to treat Stargardt disease.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Dependovirus/genetics , Genetic Vectors/genetics , Phenotype , Stargardt Disease/genetics , Transgenes , ATP-Binding Cassette Transporters/metabolism , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line, Tumor , Chromatography, High Pressure Liquid , Disease Models, Animal , Humans , Mice, Knockout , Open Reading Frames , Optical Imaging , Photoreceptor Cells/metabolism , Stargardt Disease/diagnosis , Stargardt Disease/therapy
15.
Theranostics ; 9(4): 1170-1180, 2019.
Article in English | MEDLINE | ID: mdl-30867823

ABSTRACT

Retinal pigment epithelial (RPE) degeneration is potentially involved in the pathogenesis of several retinal degenerative diseases. mTORC1 signaling is shown as a crucial regulator of many biological processes and disease progression. In this study, we aimed at investigating the role of mTORC1 signaling in RPE degeneration. Methods: Western blots were conducted to detect mTORC1 expression pattern during RPE degeneration. Cre-loxP system was used to generate RPE-specific mTORC1 activation mice. Fundus, immunofluorescence staining, transmission electron microscopy, and targeted metabolomic analysis were conducted to determine the effects of mTORC1 activation on RPE degeneration in vivo. Electroretinography, spectral-domain optical coherence tomography, and histological experiments were conducted to determine the effects of mTORC1 activation on choroidal and retinal function in vivo. Results: RPE-specific activation of mTORC1 led to RPE degeneration as shown by the loss of RPE-specific marker, compromised cell junction integrity, and intracellular accumulation of lipid droplets. RPE degeneration further led to abnormal choroidal and retinal function. The inhibition of mTORC1 signaling with rapamycin could partially reverse RPE degeneration. Targeted metabolomics analysis further revealed that mTORC1 activation affected the metabolism of purine, carboxylic acid, and niacin in RPE. Conclusion: This study revealed that abnormal activation of mTORC1 signaling leads to RPE degeneration, which could provide a promising target for the treatment of RPE dysfunction-related diseases.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/metabolism , Retinal Degeneration/physiopathology , Retinal Pigment Epithelium/pathology , Signal Transduction , Animals , Blotting, Western , Cells, Cultured , Disease Models, Animal , Electroretinography , Gene Expression Profiling , Histocytochemistry , Humans , Metabolome , Mice , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Tomography, Optical Coherence
16.
mSphere ; 4(3)2019 06 05.
Article in English | MEDLINE | ID: mdl-31167948

ABSTRACT

Epidemiological evidence correlates low serum vitamin A (retinol) levels with increased susceptibility to active tuberculosis (TB); however, retinol is biologically inactive and must be converted into its bioactive form, all-trans retinoic acid (ATRA). Given that ATRA triggers a Niemann-Pick type C2 (NPC2)-dependent antimicrobial response against Mycobacterium tuberculosis, we investigated the mechanism by which the immune system converts retinol into ATRA at the site of infection. We demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived dendritic cells (DCs), but not macrophages, express enzymes in the vitamin A metabolic pathway, including aldehyde dehydrogenase 1 family, member a2 (ALDH1A2) and short-chain dehydrogenase/reductase family, member 9 (DHRS9), enzymes capable of the two-step conversion of retinol into ATRA, which is subsequently released from the cell. Additionally, mRNA and protein expression levels of ALDH1A2 and DC marker CD1B were lower in tuberculosis lung tissues than in normal lung. The conditioned medium from DCs cultured with retinol stimulated antimicrobial activity from M. tuberculosis-infected macrophages, as well as the expression of NPC2 in monocytes, which was blocked by specific inhibitors, including retinoic acid receptor inhibitor (RARi) or N,N-diethylaminobenzaldehyde (DEAB), an ALDH1A2 inhibitor. These results indicate that metabolism of vitamin A by DCs transactivates macrophage antimicrobial responses.IMPORTANCE Tuberculosis (TB) is the leading cause of death by a single infectious agent worldwide. One factor that contributes to the success of the microbe is the deficiency in immunomodulatory nutrients, such as vitamin A (retinol), which are prevalent in areas where TB is endemic. Clinical trials show that restoration of systemic retinol levels in active TB patients is ineffective in mitigating the disease; however, laboratory studies demonstrate that activation of the vitamin A pathway in Mycobacterium tuberculosis-infected macrophages triggers an antimicrobial response. Therefore, the goal of this study was to determine the link between host retinol levels and retinoic acid-mediated antimicrobial responses against M. tuberculosis By combining established in vitro models with in situ studies of lung tissue from TB patients, this study demonstrates that the innate immune system utilizes transcellular metabolism leading to activation between dendritic cells and macrophages as a means to combat the pathogen.


Subject(s)
Dendritic Cells/enzymology , Dendritic Cells/immunology , Mycobacterium tuberculosis/immunology , Vitamin A/metabolism , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/immunology , Adult , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/immunology , Cells, Cultured , Culture Media, Conditioned/chemistry , Dendritic Cells/microbiology , Humans , Lung/microbiology , Macrophages/enzymology , Macrophages/immunology , Macrophages/microbiology , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/immunology , Tuberculosis/microbiology
17.
Brain Res ; 1180: 1-6, 2007 Nov 14.
Article in English | MEDLINE | ID: mdl-17936729

ABSTRACT

Mutations in the transcriptional repressor methyl CpG binding protein 2 (MeCP2) are responsible for most cases of Rett Syndrome (RS), a severe neurodevelopmental disorder characterized by developmental regression, minimal speech, seizures, postnatal microcephaly and hand stereotypies. Absence of the maternal copy of ubiquitin protein ligase 3A (UBE3A) results in Angelman syndrome, also a severe developmental disorder that shares some clinical features with RS. As MeCP2 regulates gene expression, this has led to the hypothesis that MeCP2 may regulate UBE3A expression; however, there are conflicting reports regarding the expression of Ube3a in MeCP2 null mutant mice. We have generated a novel MeCP2 mutant knock-in mouse with the mutation R168X, one of the most common mutations in patients with RS. These mice show features similar to RS, including hypoactivity, forelimb stereotypies, breathing irregularities, weight changes, hind limb atrophy, and scoliosis. The male mice experience early death. Analysis of Ube3a mRNA and protein levels in the Mecp2(R168X) male mice showed no significant difference in expression compared to their wild type littermates.


Subject(s)
Gene Expression Regulation/physiology , Methyl-CpG-Binding Protein 2/metabolism , RNA, Messenger/metabolism , Rett Syndrome/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cerebral Cortex/metabolism , Disease Models, Animal , Female , Gene Expression Regulation/genetics , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Mutant Strains , Mutagenesis, Site-Directed , Rett Syndrome/genetics , Ubiquitin-Protein Ligases/genetics
18.
Mol Biol Cell ; 26(1): 1-14, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25378587

ABSTRACT

Autophagy is an essential mechanism for clearing damaged organelles and proteins within the cell. As with neurodegenerative diseases, dysfunctional autophagy could contribute to blinding diseases such as macular degeneration. However, precisely how inefficient autophagy promotes retinal damage is unclear. In this study, we investigate innate mechanisms that modulate autophagy in the retinal pigment epithelium (RPE), a key site of insult in macular degeneration. High-speed live imaging of polarized adult primary RPE cells and data from a mouse model of early-onset macular degeneration identify a mechanism by which lipofuscin bisretinoids, visual cycle metabolites that progressively accumulate in the RPE, disrupt autophagy. We demonstrate that bisretinoids trap cholesterol and bis(monoacylglycero)phosphate, an acid sphingomyelinase (ASMase) cofactor, within the RPE. ASMase activation increases cellular ceramide, which promotes tubulin acetylation on stabilized microtubules. Live-imaging data show that autophagosome traffic and autophagic flux are inhibited in RPE with acetylated microtubules. Drugs that remove excess cholesterol or inhibit ASMase reverse this cascade of events and restore autophagosome motility and autophagic flux in the RPE. Because accumulation of lipofuscin bisretinoids and abnormal cholesterol homeostasis are implicated in macular degeneration, our studies suggest that ASMase could be a potential therapeutic target to ensure the efficient autophagy that maintains RPE health.


Subject(s)
Autophagy , Cholesterol/metabolism , Macular Degeneration/physiopathology , Phagosomes/metabolism , Retinal Pigment Epithelium/ultrastructure , Sphingomyelin Phosphodiesterase/metabolism , Animals , Ceramides/metabolism , Humans , Lipofuscin/metabolism , Lysophospholipids/metabolism , Mice , Mice, Knockout , Microtubules/metabolism , Monoglycerides/metabolism , Retinoids/pharmacology , Tubulin/metabolism
19.
Invest Ophthalmol Vis Sci ; 56(13): 8179-86, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720470

ABSTRACT

PURPOSE: To investigate the effect of ABCA4 mutation status on lipofuscin-related quantitative autofluorescence (qAF) in humans and on bisretinoid accumulation in mice. METHODS: Genotyped parents (n = 26; age 37-64 years) of patients with biallelic ABCA4-related retinopathy underwent in-depth retinal phenotyping including qAF imaging as a surrogate measure for RPE lipofuscin accumulation. In addition, bisretinoids as the main components of autofluorescent lipofuscin at the ocular fundus were quantified in Abca4-/-, Abca4+/-, and wild-type mice. RESULTS: Index patients showed a retinal phenotype characteristic for ABCA4-related retinopathy, including increased qAF levels. In contrast, qAF measures in carriers of only one ABCA4 mutation were not different from age-matched controls in this sample, and there was no difference between truncating and missense mutations. Also, none of these carriers presented an abnormal phenotype on conventional imaging. One parent with ABCA4-related retinopathy and increased qAF carried an additional ABCA4 mutation, explaining the phenotype under a recessive disease model (pseudodominance). Biochemical analysis in the mouse model revealed direct downstream products (A2PE-H2, at-RALdimer-PE) of the ABCA4 substrate N-Ret-PE to be similar in wild-type and Abca4+/- mice. Both bisretinoids were 12- to 18-fold increased in Abca4-/- mice. Levels of A2E and A2PE in Abca4+/- mice were in between those measured in wild-type and Abca4-/- mice. CONCLUSIONS: This study indicates that carriers of monoallelic ABCA4 mutations are phenotypically normal. However, biochemical analysis in the Abca4-deficient mouse model suggests detectable effects of one mutation in ABCA4 on the molecular level. The findings may have implications for therapeutic approaches such as gene replacement therapy.


Subject(s)
ATP-Binding Cassette Transporters/genetics , DNA/genetics , Mutation , Retinal Diseases/genetics , Retinal Pigment Epithelium/pathology , ATP-Binding Cassette Transporters/metabolism , Adult , Alleles , Animals , Cross-Sectional Studies , DNA Mutational Analysis , Disease Models, Animal , Female , Fluorescein Angiography , Fundus Oculi , Humans , Male , Mice , Mice, Knockout , Middle Aged , Phenotype , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Pigment Epithelium/metabolism , Retrospective Studies , Tomography, Optical Coherence
20.
Invest Ophthalmol Vis Sci ; 54(8): 5602-12, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23761084

ABSTRACT

PURPOSE: To investigate fundus autofluorescence (AF) characteristics in the Abca4(-/-) mouse, an animal model for AMD and Stargardt disease, and to correlate findings with functional, structural, and biochemical assessments. METHODS: Blue (488 nm) and near-infrared (790 nm) fundus AF images were quantitatively and qualitatively analyzed in pigmented Abca4(-/-) mice and wild type (WT) controls in vivo. Functional, structural, and biochemical assessments included electroretinography (ERG), light and electron microscopic analysis, and A2E quantification. All assessments were performed across age groups. RESULTS: In Abca4(-/-) mice, lipofuscin-related 488 nm AF increased early in life with a ceiling effect after 6 months. This increase was first paralleled by an accumulation of typical lipofuscin granules in the retinal pigment epithelium (RPE). Later, lipofuscin and melanin granules decreased in number, whereas melanolipofuscin granules increased. This increase in melanolipofuscin granules paralleled an increase in melanin-related 790 nm AF. Old Abca4(-/-) mice revealed a flecked fundus AF pattern at both excitation wavelengths. The amount of A2E, a major lipofuscin component, increased 10- to 12-fold in 6- to 9-month-old Abca4(-/-) mice compared with controls, while 488 nm AF intensity only increased 2-fold. Despite pronounced lipofuscin accumulation in the RPE of Abca4(-/-) mice, ERG and histology showed a slow age-related thinning of the photoreceptor layer similar to WT controls up to 12 months. CONCLUSIONS: Fundus AF can be used to monitor lipofuscin accumulation and melanin-related changes in vivo in mouse models of retinal disease. High RPE lipofuscin may not adversely affect retinal structure or function over prolonged time intervals, and melanin-related changes (melanolipofuscin formation) may occur before the decline in retinal function.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Macular Degeneration/genetics , Macular Degeneration/pathology , Pyridinium Compounds/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Retinoids/metabolism , Animals , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/pathology , Cytoplasmic Granules/ultrastructure , Dark Adaptation/physiology , Disease Models, Animal , Electroretinography , Fundus Oculi , Genes, Recessive , Lipofuscin/metabolism , Macular Degeneration/metabolism , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Optical Imaging , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism , Retinal Dystrophies/pathology , Retinal Pigment Epithelium/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL