Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
BMC Genomics ; 25(1): 378, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632523

ABSTRACT

OBJECTIVE: This study aims to analyze the molecular characteristics of the novel coronavirus (SARS-CoV-2) Omicron variant BA.2.76 in Jining City, China. METHODS: Whole-genome sequencing was performed on 87 cases of SARS-CoV-2 infection. Evolutionary trees were constructed using bioinformatics software to analyze sequence homology, variant sites, N-glycosylation sites, and phosphorylation sites. RESULTS: All 87 SARS-CoV-2 whole-genome sequences were classified under the evolutionary branch of the Omicron variant BA.2.76. Their similarity to the reference strain Wuhan-Hu-1 ranged from 99.72 to 99.74%. In comparison to the reference strain Wuhan-Hu-1, the 87 sequences exhibited 77-84 nucleotide differences and 27 nucleotide deletions. A total of 69 amino acid variant sites, 9 amino acid deletions, and 1 stop codon mutation were identified across 18 proteins. Among them, the spike (S) protein exhibited the highest number of variant sites, and the ORF8 protein showed a Q27 stop mutation. Multiple proteins displayed variations in glycosylation and phosphorylation sites. CONCLUSION: SARS-CoV-2 continues to evolve, giving rise to new strains with enhanced transmission, stronger immune evasion capabilities, and reduced pathogenicity. The application of high-throughput sequencing technologies in the epidemic prevention and control of COVID-19 provides crucial insights into the evolutionary and variant characteristics of the virus at the genomic level, thereby holding significant implications for the prevention and control of the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Genomics , China , Amino Acids , Nucleotides
2.
Kidney Int ; 105(4): 775-790, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286179

ABSTRACT

Chronic kidney disease (CKD) is characterized by kidney inflammation and fibrosis. However, the precise mechanisms leading to kidney inflammation and fibrosis are poorly understood. Since histone deacetylase is involved in inflammation and fibrosis in other tissues, we examined the role of histone deacetylase 3 (HDAC3) in the regulation of inflammation and kidney fibrosis. HDAC3 is induced in the kidneys of animal models of CKD but mice with conditional HDAC3 deletion exhibit significantly reduced fibrosis in the kidneys compared with control mice. The expression of proinflammatory and profibrotic genes was significantly increased in the fibrotic kidneys of control mice, which was impaired in mice with HDAC3 deletion. Genetic deletion or pharmacological inhibition of HDAC3 reduced the expression of proinflammatory genes in cultured monocytes/macrophages. Mechanistically, HDAC3 deacetylates Lys122 of NF-κB p65 subunit turning on transcription. RGFP966, a selective HDAC3 inhibitor, reduced fibrosis in cells and in animal models by blocking NF-κB p65 binding to κB-containing DNA sequences. Thus, our study identified HDAC3 as a critical regulator of inflammation and fibrosis of the kidney through deacetylation of NF-κB unlocking its transcriptional activity. Hence, targeting HDAC3 could serve as a novel therapeutic strategy for CKD.


Subject(s)
Histone Deacetylases , Nephritis , Renal Insufficiency, Chronic , Animals , Mice , Fibrosis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Inflammation/genetics , Inflammation/pathology , Kidney/pathology , Nephritis/genetics , Nephritis/pathology , NF-kappa B/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
3.
J Cell Physiol ; 237(1): 983-991, 2022 01.
Article in English | MEDLINE | ID: mdl-34515350

ABSTRACT

Hypertension is a major cause of chronic kidney disease. However, the pathogenesis of hypertensive kidney disease is not fully understood. Recently, we have shown that CXCL16/phosphoinositide-3 kinase γ (PI3Kγ) plays an important role in the development of renal inflammation and fibrosis in angiotensin II (AngII) induced hypertensive nephropathy. In the present study, we examined the role of phosphatase and tensin homolog (PTEN), a major regulator of PI3K signaling, in the pathogenesis of renal inflammation and fibrosis in an experimental model of hypertension induced by AngII. We generated myeloid PTEN conditional knockout mice by crossing PTENflox/flox mice with LysM-driven Cre mice. Littermate LysM-Cre-/- PTENflox/flox mice were used as a control. Both myeloid PTEN knockout mice and their littermate control mice exhibited similar blood pressure at baseline. AngII treatment resulted in an increase in blood pressure that was comparable between myeloid PTEN knockout mice and littermate control mice. Compared with littermate control mice, myeloid PTEN knockout mice developed more severe kidney dysfunction, proteinuria, and fibrosis following AngII treatment. Furthermore, myeloid PTEN deficiency exacerbated total collagen deposition and extracellular matrix protein production and enhanced myeloid fibroblast accumulation and myofibroblast formation in the kidney following AngII treatment. Finally, myeloid PTEN deficiency markedly augmented infiltration of F4/80+ macrophages and CD3+ T cells into the kidneys of AngII-treated mice. Taken together, these results indicate that PTEN plays a crucial role in the pathogenesis of renal inflammation and fibrosis through the regulation of infiltration of myeloid fibroblasts, macrophages, and T lymphocytes into the kidney.


Subject(s)
Angiotensin II , Hypertension , PTEN Phosphohydrolase/metabolism , Angiotensin II/metabolism , Animals , Female , Fibrosis , Humans , Hypertension/chemically induced , Hypertension/genetics , Hypertension/pathology , Hypertension, Renal , Inflammation/pathology , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nephritis , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism
4.
Am J Physiol Renal Physiol ; 319(6): F1073-F1080, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33103444

ABSTRACT

Cisplatin, a commonly used anticancer drug, has been shown to induce acute kidney injury, which limits its clinical use in cancer treatment. Emerging evidence has suggested that AMP-activated protein kinase (AMPK), which functions as a cellular energy sensor, is activated by various cellular stresses that deplete cellular ATP. However, the potential role of AMPK in cisplatin-induced apoptosis of renal tubular epithelial cells has not been studied. In this study, we demonstrated that cisplatin activates AMPK (Thr172 phosphorylation) in cultured renal tubular epithelial cells in a time-dependent manner, which was associated with p53 phosphorylation. Compound C, a selective AMPK inhibitor, suppressed cisplatin-induced AMPK activation, p53 phosphorylation, Bax induction, and caspase 3 activation. Furthermore, silencing AMPK expression by siRNA attenuated cisplatin-induced p53 phosphorylation, Bax induction, and caspase 3 activation. In a mouse model of cisplatin-induced kidney injury, compound C inhibited p53 phosphorylation, Bax expression, caspase 3 activation, and apoptosis, protecting the kidney from injury and dysfunction. Taken together, these results suggest that the AMPK-p53-Bax signaling pathway plays a crucial role in cisplatin-induced tubular epithelial cell apoptosis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acute Kidney Injury/chemically induced , Apoptosis/drug effects , Cisplatin/toxicity , Epithelial Cells/drug effects , Kidney Tubules/drug effects , AMP-Activated Protein Kinases/genetics , Acute Kidney Injury/enzymology , Acute Kidney Injury/pathology , Animals , Caspase 3/metabolism , Cell Line , Epithelial Cells/enzymology , Epithelial Cells/pathology , Kidney Tubules/enzymology , Kidney Tubules/pathology , Mice , Phosphorylation , Signal Transduction , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism
5.
J Virol ; 92(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29321333

ABSTRACT

Hepatitis C virus (HCV) infection has been shown to regulate microRNA 130a (miR-130a) in patient biopsy specimens and in cultured cells. We sought to identify miR-130a target genes and to explore the mechanisms by which miR-130a regulates HCV and hepatitis B virus (HBV) replication. We used bioinformatics software, including miRanda, TargetScan, PITA, and RNAhybrid, to predict potential miR-130a target genes. miR-130a and its target genes were overexpressed or were knocked down by use of small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 guide RNA (gRNA). Selected gene mRNAs and their proteins, together with HCV replication in OR6 cells, HCV JFH1-infected Huh7.5.1 cells, and HCV JFH1-infected primary human hepatocytes (PHHs) and HBV replication in HepAD38 cells, HBV-infected NTCP-Huh7.5.1 cells, and HBV-infected PHHs, were measured by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting, respectively. We selected 116 predicted target genes whose expression was related to viral pathogenesis or immunity for qPCR validation. Of these, the gene encoding pyruvate kinase in liver and red blood cell (PKLR) was confirmed to be regulated by miR-130a overexpression. miR-130a overexpression (via a mimic) knocked down PKLR mRNA and protein levels. A miR-130a inhibitor and gRNA increased PKLR expression, HCV replication, and HBV replication, while miR-130a gRNA and PKLR overexpression increased HCV and HBV replication. Supplemental pyruvate increased HCV and HBV replication and rescued the inhibition of HCV and HBV replication by the miR-130a mimic and PKLR knockdown. We concluded that miR-130a regulates HCV and HBV replication through its targeting of PKLR and subsequent pyruvate production. Our data provide novel insights into key metabolic enzymatic pathway steps regulated by miR-130a, including the steps involving PKLR and pyruvate, which are subverted by HCV and HBV replication.IMPORTANCE We identified that miR-130a regulates the target gene PKLR and its subsequent effect on pyruvate production. Pyruvate is a key intermediate in several metabolic pathways, and we identified that pyruvate plays a key role in regulation of HCV and HBV replication. This previously unrecognized, miRNA-regulated antiviral mechanism has implications for the development of host-directed strategies to interrupt the viral life cycle and prevent establishment of persistent infection for HCV, HBV, and potentially other viral infections.


Subject(s)
Gene Expression Regulation , Hepacivirus/physiology , Hepatitis B virus/physiology , Hepatitis B/metabolism , Hepatitis C/metabolism , MicroRNAs/metabolism , Virus Replication/physiology , Cell Line, Tumor , Hepatitis B/genetics , Hepatitis B/pathology , Hepatitis C/genetics , Hepatitis C/pathology , Humans , MicroRNAs/genetics , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(5): 439-442, 2019 May 10.
Article in Zh | MEDLINE | ID: mdl-31030428

ABSTRACT

OBJECTIVE: To assess the association of KIR/HLA alleles with hepatocellular carcinoma (HCC) and hepatitis B virus (HBV) infection among ethnic Han Chinese patients from southern China. METHODS: For 95 patients with HCC and 171 healthy controls, the genotype of HLA-C alleles was determined with a PCR sequence-specific oligonucleotides typing method on an Illumina GenDx NGSgo platform. Genotypes comprised of HLA-C and KIR gene alleles were also subjected to statistical analysis. RESULTS: In total 16 KIR genes (2DL2, 2DS2, 2DS3, 2DS5, 3DS1, 2DS1, 2DL5, 2DS4, 3DL1, 3DP1, 2DL3, 2DP1, 3DL3, 2DL1, 3DL2 and 2DL4) were discovered in the two groups. The frequencies of KIR2DL3 alleles and combinational genotypes of KIR2DL3/HLA-C1C2 were significantly lower in the patient group compared with the controls (0.9368 vs. 0.9883, χ²>3.84; P<0.05, OR = 0.1; 0.0112 vs. 0.2663, χ²>3.84; P<0.05, RR = 0.03). The frequency of HLA-C2C2 genotype of the patient group was significantly lower than that of the controls (0.0316 vs. 0.2690, P<0.05, RR = 0.09), while the frequency of HLA-C1C2 genotype was significantly higher than that of the controls (0.2316 vs. 0.0058, P<0.05, RR = 51.23). CONCLUSION: Above results suggested that the KIR2DL3 allele is associated with lower risk for HCC. There may be individual difference in patients with HCC and HBV infection but various combinations of KIR/HLA alleles.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Alleles , Carcinoma, Hepatocellular/genetics , China , Gene Frequency , Genotype , Humans , Liver Neoplasms/genetics , Polymorphism, Genetic , Receptors, KIR
7.
J Med Virol ; 89(12): 2173-2180, 2017 12.
Article in English | MEDLINE | ID: mdl-28561372

ABSTRACT

Type I interferons (IFNs) are a family of primordial cytokines that respond to various pathogen infections including Hepatitis C virus (HCV). Type I IFNs signal through Jak/STAT pathway leading to the production of a few hundred interferon stimulated genes (ISGs). The aim of this study was to explore the role of one of these ISGs, MxA in HCV infection and type I IFN production. Plasmid encoding MxA was cloned into PcDNA3.1-3×tag vector and MxA expression was confirmed both at mRNA (RT-PCR) and protein (Western blot, WB) levels. IFNα and IFNß productions were quantified by RT-PCR from cell lysate and by ELISA kit from culture medium following MxA over-expression in Huh7.5.1 cells. The activation status of Jak/STAT signaling pathway was examined at three levels: p-STAT1 (WB), interferon sensitive response element (ISRE) activity (dual luciferase reporter gene assay), and levels of ISG expression (RT-qPCR). J6/JFH1 HCV culture system was used to study the role of MxA in HCV replication. Our findings indicated that MxA over-expression inhibited HCV replication and potentiated the IFNα-mediated anti-HCV activity; MxA stimulated the production of IFNα, IFNß, and enhanced IFNα-induced activation of Jak-STAT signaling pathway. We concluded that MxA is a positive regulator of type I IFN signaling in HCV infection.


Subject(s)
Gene Expression Regulation , Hepatitis C/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Myxovirus Resistance Proteins/metabolism , Blotting, Western , Cell Line , Hepacivirus/immunology , Hepatitis C/metabolism , Hepatitis C/virology , Humans , Interferon Type I/genetics , Interferon-alpha/genetics , Interferon-alpha/immunology , Interferon-alpha/metabolism , Janus Kinases/metabolism , Myxovirus Resistance Proteins/genetics , Phosphorylation , Polymerase Chain Reaction , STAT1 Transcription Factor/metabolism , Signal Transduction , Virus Replication
8.
Mediators Inflamm ; 2016: 7417648, 2016.
Article in English | MEDLINE | ID: mdl-27867263

ABSTRACT

Hepatitis B virus (HBV) is an important account of infectious hepatitis and interferon (IFN) remains one of the best treatment options. Activation of type I IFN signaling pathway leads to expressions of IFN-stimulated genes (ISGs) which play important roles in antiviral and immunomodulatory responses to HBV or hepatitis C virus (HCV) infection. Our previous studies indicated that ISG15 and its conjugation (ISGylation) were exploited by HCV to benefit its replication and persistent infection. This study was designed to assess the role of ISG15 and ISGylation in HBV infection in vitro. The levels of ISG15 and ISGylation were upregulated by ISG15 plasmid transfection into HepG2.2.15 cells. Decreased ISGylation was achieved by siRNA targeting UBE1L, the only E1 activating enzyme for ISGylation. Overexpression of ISG15 and subsequent ISGylation significantly increased the levels of HBV DNA in the culture supernatants although the intracellular viral replication remained unaffected. Silencing UBE1L, with decreased ISGylation achieved, abrogated this ISGylation-mediated promoting effect. Our data indicated that overexpression of ISG15 stimulated HBV production in an ISGylation-dependent manner. Identification of ISG15-conjugated proteins (either HBV viral or host proteins) may reveal promising candidates for further antiviral drug development.


Subject(s)
Cytokines/metabolism , Hepacivirus/pathogenicity , Interferon-alpha/metabolism , Ubiquitins/metabolism , Cytokines/genetics , DNA, Viral/genetics , Hep G2 Cells , Hepacivirus/genetics , Humans , Signal Transduction/physiology , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism , Ubiquitins/genetics
9.
Viruses ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38932216

ABSTRACT

Diarrhea, often caused by viruses like rotavirus (RV) and norovirus (NV), is a global health concern. This study focuses on RV and NV in Jining City from 2021 to 2022. Between 2021 and 2022, a total of 1052 diarrhea samples were collected. Real-Time Quantitative Fluorescent Reverse Transcriptase-PCR was used to detect RV-A, NV GI, and NV GII. For RV-A-positive samples, VP7 and VP4 genes were sequenced for genotype analysis, followed by the construction of evolutionary trees. Likewise, for NV-GII-positive samples, VP1 and RdRp genes were sequenced for genotypic analysis, and evolutionary trees were subsequently constructed. Between 2021 and 2022, Jining City showed varying detection ratios: RV-A alone (excluding co-infection of RV-A and NV GII) at 7.03%, NV GI at 0.10%, NV GII alone (excluding co-infection of RV-A and NV GII) at 5.42%, and co-infection of RV-A and NV GII at 1.14%. The highest RV-A ratios were shown in children ≤1 year and 2-5 years. Jining, Jinxiang County, and Liangshan County had notably high RV-A ratios at 24.37% (excluding co-infection of RV-A and NV GII) and 18.33% (excluding co-infection of RV-A and NV GII), respectively. Jining, Qufu, and Weishan had no RV-A positives. Weishan showed the highest NV GII ratios at 35.48% (excluding co-infection of RV-A and NV GII). Genotype analysis showed that, in 2021, G9P[8] and G2P[4] were dominant at 94.44% and 5.56%, respectively. In 2022, G8P[8], G9P[8], and G1P[8] were prominent at 75.86%, 13.79%, and 10.35%, respectively. In 2021, GII.3[P12], GII.4[P16], and GII.4[P31] constituted 71.42%, 14.29%, and 14.29%, respectively. In 2022, GII.3[P12] and GII.4[P16] accounted for 55.00% and 45.00%, respectively. RV-A and NV showed varying patterns for different time frames, age groups, and regions within Jining. Genotypic shifts were also observed in prevalent RV-A and NV GII strains in Jining City from 2021 to 2022. Ongoing monitoring of RV-A and NV is recommended for effective prevention and control.


Subject(s)
Caliciviridae Infections , Diarrhea , Genotype , Norovirus , Phylogeny , Rotavirus Infections , Rotavirus , Norovirus/genetics , Norovirus/classification , Norovirus/isolation & purification , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Child, Preschool , Infant , Diarrhea/virology , Diarrhea/epidemiology , Child , China/epidemiology , Female , Coinfection/virology , Coinfection/epidemiology , Gastroenteritis/virology , Gastroenteritis/epidemiology , Feces/virology , Male , Adult , Adolescent , Capsid Proteins/genetics , Infant, Newborn , Young Adult , Middle Aged
10.
Nat Commun ; 15(1): 780, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278841

ABSTRACT

The Retinoic acid-Inducible Gene I (RIG-I) like receptors (RLRs) are the major viral RNA sensors essential for the initiation of antiviral immune responses. RLRs are subjected to stringent transcriptional and posttranslational regulations, of which ubiquitination is one of the most important. However, the role of ubiquitination in RLR transcription is unknown. Here, we screen 375 definite ubiquitin ligase knockout cell lines and identify Ubiquitin Protein Ligase E3 Component N-Recognin 5 (UBR5) as a positive regulator of RLR transcription. UBR5 deficiency reduces antiviral immune responses to RNA viruses, while increases viral replication in primary cells and mice. Ubr5 knockout mice are more susceptible to lethal RNA virus infection than wild type littermates. Mechanistically, UBR5 mediates the Lysine 63-linked ubiquitination of Tripartite Motif Protein 28 (TRIM28), an epigenetic repressor of RLRs. This modification prevents intramolecular SUMOylation of TRIM28, thus disengages the TRIM28-imposed brake on RLR transcription. In sum, UBR5 enables rapid upregulation of RLR expression to boost antiviral immune responses by ubiquitinating and de-SUMOylating TRIM28.


Subject(s)
RNA Viruses , Mice , Animals , Ubiquitination , Cell Line , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Immunity, Innate , Ubiquitin-Protein Ligases/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism
11.
Cells ; 12(12)2023 06 08.
Article in English | MEDLINE | ID: mdl-37371054

ABSTRACT

Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Humans , Kidney/pathology , Renal Insufficiency, Chronic/pathology , Acute Kidney Injury/pathology , Fibrosis , Metabolic Networks and Pathways
12.
Front Immunol ; 14: 1125246, 2023.
Article in English | MEDLINE | ID: mdl-36776881

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic named coronavirus disease 2019 (COVID-19) that has become the greatest worldwide public health threat of this century. Recent studies have unraveled numerous mysteries of SARS-CoV-2 pathogenesis and thus largely improved the studies of COVID-19 vaccines and therapeutic strategies. However, important questions remain regarding its therapy. In this review, the recent research advances on COVID-19 mechanism are quickly summarized. We mainly discuss current therapy strategies for COVID-19, with an emphasis on antiviral agents, neutralizing antibody therapies, Janus kinase inhibitors, and steroids. When necessary, specific mechanisms and the history of therapy are present, and representative strategies are described in detail. Finally, we discuss key outstanding questions regarding future directions of the development of COVID-19 treatment.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19 Drug Treatment , Antiviral Agents/pharmacology
13.
Br J Pharmacol ; 180(17): 2250-2265, 2023 09.
Article in English | MEDLINE | ID: mdl-37076137

ABSTRACT

BACKGROUND AND PURPOSE: Renal fibrosis is a common feature of chronic kidney disease. Myeloid fibroblasts and macrophages contribute significantly to the pathogenesis of renal fibrosis. However, the molecular mechanisms underlying myeloid fibroblast activation and macrophage polarization are not fully understood. In this study, we examined the role of Jumonji domain-containing protein-3 (JMJD3) in myeloid fibroblast activation, macrophage polarization, and renal fibrosis development in a preclinical model of obstructive nephropathy. EXPERIMENTAL APPROACH: To examine the role of JMJD3 in renal fibrosis, we generated mice with global or myeloid cell-specific deletion of JMJD3, and we treated wild-type mice with vehicle or GSK-J4 (selective JMJD3 inhibitor). Mice were subjected to unilateral ureteral obstructive injury to induce renal fibrosis. KEY RESULTS: JMJD3 expression was significantly increased in the kidneys during the development of renal fibrosis, which was associated with an increase in H3K27 dimethylation. Mice with either global or myeloid JMJD3 deficiency exhibited significantly reduced total collagen deposition and extracellular matrix protein production, myeloid fibroblast activation and M2 macrophage polarization in the obstructed kidney. Moreover, IFN regulatory factor 4, a mediator of M2 macrophage polarization, was significantly induced in the obstructed kidneys, which was abolished by JMJD3 deficiency. Furthermore, pharmacological inhibition of JMJD3 with GSK-J4 attenuated kidney fibrosis, reduced myeloid fibroblast activation and suppressed M2 macrophage polarization in the obstructed kidney. CONCLUSION AND IMPLICATIONS: Our study identifies JMJD3 as a critical regulator of myeloid fibroblast activation, macrophage polarization, and renal fibrosis development. Therefore, JMJD3 may represent a promising therapeutic target for chronic kidney disease.


Subject(s)
Macrophage Activation , Renal Insufficiency, Chronic , Mice , Animals , Kidney/pathology , Macrophages/metabolism , Fibrosis , Renal Insufficiency, Chronic/metabolism , Fibroblasts/pathology , Mice, Inbred C57BL
14.
Cells ; 11(17)2022 09 05.
Article in English | MEDLINE | ID: mdl-36078170

ABSTRACT

The TGF-ß/Smad3 signaling pathway is an important process in the pathogenesis of kidney fibrosis. However, the molecular mechanisms are not completely elucidated. The current study examined the functional role of S100A4 in regulating TGF-ß/Smad3 signaling in fibroblast activation and kidney fibrosis development. S100A4 was upregulated in the kidney in a murine model of renal fibrosis induced by folic acid nephropathy. Further, S100A4 was predominant in the tubulointerstitial cells of the kidney. Pharmacological inhibition of S100A4 with niclosamide significantly attenuated fibroblast activation, decreased collagen content, and reduced extracellular matrix protein expression in folic acid nephropathy. Overexpression of S100A4 in cultured renal fibroblasts significantly facilitated TGF-ß1-induced activation of fibroblasts by increasing the expression of α-SMA, collagen-1 and fibronectin. In contrast, S100A4 knockdown prevented TGF-ß1-induced activation of fibroblast and transcriptional activity of Smad3. Mechanistically, S100A4 interacts with Smad3 to stabilize the Smad3/Smad4 complex and promotes their translocation to the nucleus. In conclusion, S100A4 facilitates TGF-ß signaling via interaction with Smad3 and promotes kidney fibrosis development. Manipulating S100A4 may provide a beneficial therapeutic strategy for chronic kidney disease.


Subject(s)
Fibroblasts , Renal Insufficiency, Chronic , S100 Calcium-Binding Protein A4 , Transforming Growth Factor beta1 , Animals , Collagen/metabolism , Fibroblasts/metabolism , Fibrosis , Folic Acid/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Mice , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , S100 Calcium-Binding Protein A4/antagonists & inhibitors , Transforming Growth Factor beta1/metabolism
15.
Cells ; 10(11)2021 11 06.
Article in English | MEDLINE | ID: mdl-34831280

ABSTRACT

Renal fibrosis is a pathologic feature of chronic kidney disease, which can lead to end-stage kidney disease. Myeloid fibroblasts play a central role in the pathogenesis of renal fibrosis. However, the molecular mechanisms pertaining to myeloid fibroblast activation remain to be elucidated. In the present study, we examine the role of signal transducer and activator of transcription 6 (STAT6) in myeloid fibroblast activation, macrophage polarization, and renal fibrosis development in a mouse model of folic acid nephropathy. STAT6 is activated in the kidney with folic acid nephropathy. Compared with folic-acid-treated wild-type mice, STAT6 knockout mice had markedly reduced myeloid fibroblasts and myofibroblasts in the kidney with folic acid nephropathy. Furthermore, STAT6 knockout mice exhibited significantly less CD206 and PDGFR-ß dual-positive fibroblast accumulation and M2 macrophage polarization in the kidney with folic acid nephropathy. Consistent with these findings, STAT6 knockout mice produced less extracellular matrix protein, exhibited less severe interstitial fibrosis, and preserved kidney function in folic acid nephropathy. Taken together, these results have shown that STAT6 plays a critical role in myeloid fibroblasts activation, M2 macrophage polarization, extracellular matrix protein production, and renal fibrosis development in folic acid nephropathy. Therefore, targeting STAT6 may provide a novel therapeutic strategy for fibrotic kidney disease.


Subject(s)
Cell Polarity , Fibroblasts/metabolism , Folic Acid/metabolism , Kidney Diseases/metabolism , Macrophages/metabolism , Myeloid Cells/pathology , STAT6 Transcription Factor/deficiency , Animals , Biomarkers/metabolism , Extracellular Matrix Proteins/metabolism , Fibroblasts/pathology , Kidney/pathology , Kidney/physiopathology , Kidney Diseases/pathology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , STAT6 Transcription Factor/metabolism
16.
Front Immunol ; 12: 735014, 2021.
Article in English | MEDLINE | ID: mdl-34512669

ABSTRACT

A hallmark of chronic kidney disease is renal fibrosis, which can result in progressive loss of kidney function. Currently, there is no effective therapy for renal fibrosis. Therefore, there is an urgent need to identify potential drug targets for renal fibrosis. In this study, we examined the effect of a selective STAT6 inhibitor, AS1517499, on myeloid fibroblast activation, macrophage polarization, and development of renal fibrosis in two experimental murine models. To investigate the effect of STAT6 inhibition on myeloid fibroblast activation, macrophage polarization, and kidney fibrosis, wild-type mice were subjected to unilateral ureteral obstruction or folic acid administration and treated with AS1517499. Mice treated with vehicle were used as control. At the end of experiments, kidneys were harvested for analysis of myeloid fibroblast activation, macrophage polarization, and renal fibrosis and function. Unilateral ureteral obstruction or folic acid administration induced STAT6 activation in interstitial cells of the kidney, which was significantly abolished by AS1517499 treatment. Mice treated with AS1517499 accumulated fewer myeloid fibroblasts and myofibroblasts in the kidney with ureteral obstruction or folic acid nephropathy compared with vehicle-treated mice. Moreover, AS1517499 significantly suppressed M2 macrophage polarization in the injured kidney. Furthermore, AS1517499 markedly reduced the expression levels of extracellular matrix proteins, and development of kidney fibrosis and dysfunction. These findings suggest that AS1517499 inhibits STAT6 activation, suppresses myeloid fibroblast activation, reduces M2 macrophage polarization, attenuates extracellular matrix protein production, and preserves kidney function. Therefore, targeting STAT6 with AS1517499 is a novel therapeutic approach for chronic kidney disease.


Subject(s)
Fibroblasts/drug effects , Kidney Diseases/drug therapy , Kidney/drug effects , Macrophages/drug effects , Pyrimidines/pharmacology , STAT6 Transcription Factor/antagonists & inhibitors , Animals , Disease Models, Animal , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Kidney/metabolism , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Phenotype , STAT6 Transcription Factor/metabolism , Signal Transduction , Ureteral Obstruction/complications
17.
Front Physiol ; 10: 1224, 2019.
Article in English | MEDLINE | ID: mdl-31632286

ABSTRACT

QiDiTangShen granules (QDTS) have been proven to reduce the proteinuria in patients with diabetic nephropathy (DN) effectively. The present study was aimed to investigate the mechanism underlying QDTS's renoprotection. The main components of QDTS were identified by ultra-high liquid chromatography-tandem mass spectrometry and pharmacological databases, among which active components were screened by oral bioavailability and drug-likeness. Their regulation on autophagy-related nutrient-sensing signal molecules (AMPK, SIRT1, and mTOR) was retrieved and analyzed through the Pubmed database. Then, db/db mice were randomly divided into three groups (model control, valsartan and QDTS), and given intragastric administration for 12 weeks, separately. Fasting and random blood glucose, body weight, urinary albumin excretion (UAE) and injury markers of liver and kidney were investigated to evaluate the effects and safety. Renal histological lesions were assessed, and the expressions of proteins related to nutrient-sensing signals and autophagy were investigated. Thirteen active components were screened from 78 components identified. Over half the components had already been reported to improve nutrient-sensing signals. QDTS significantly reduced UAE, ameliorated mesangial matrix deposition, alleviate the expression of protein and mRNA of TGF-ß, α-SMA, and Col I, as well as improved the quality of mitochondria and the number of autophagic vesicles of renal tubular cells although the blood glucose was not decreased in db/db mice. Compared to the db/db group, the expression of the autophagy-inducible protein (Atg14 and Beclin1) and microtubule-associated protein 1 light chain 3-II (LC3-II) were up-regulated, autophagic substrate transporter p62 was down-regulated in QDTS group. It was also found that the expression of SIRT1 and the proportion of p-AMPK (thr172)/AMPK were increased, while the p-mTOR (ser2448)/mTOR ratio was decreased after QDTS treatment in db/db mice, which was consistent with the effect of its active ingredients on the nutrient-sensing signal pathway as reported previously. Therefore, QDTS may prevent the progression of DN by offering the anti-fibrotic effect. The renoprotection is probably attributable to the regulation of nutrient-sensing signal pathways, which activates autophagy.

18.
PLoS One ; 12(2): e0172744, 2017.
Article in English | MEDLINE | ID: mdl-28234991

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a novel bunyavirus (SFTS virus, SFTSV). At present there is still no specific antiviral treatment for SFTSV; To understand which cells support SFTSV life cycle and whether SFTSV infection activates host innate immunity, four different cell lines (Vero, Hela, Huh7.5.1, and Huh7.0) were infected with SFTSV. Intracellular/extracellular viral RNA and expression of IFNα, and IFNß were detected by real-time RT- PCR following infection. To confirm the role of non-structural protein (NSs) of SFTSV in exogenous IFNα-induced Jak/STAT signaling, p-STAT1 (Western Blot), ISRE activity (Luciferase assay) and ISG expression (real-time PCR) were examined following IFNα stimulation in the presence or absence of over-expression of NSs in Hela cells. Our study showed that all the four cell lines supported SFTSV life cycle and SFTSV activated host innate immunity to produce type I IFNs in Hela cells but not in Huh7.0, Huh7.5.1 or Vero cells. NSs inhibited exogenous IFNα-induced Jak/STAT signaling as shown by decreased p-STAT1 level, suppressed ISRE activity and down-regulated ISG expression. Suppression of the exogenous Type I IFN-induced Jak/STAT signaling by NSs might be one of the mechanisms of SFTSV to evade host immune surveillance.


Subject(s)
Bunyaviridae Infections/genetics , Interferon Type I/genetics , Phlebovirus/genetics , Viral Nonstructural Proteins/genetics , Animals , Bunyaviridae Infections/virology , Chlorocebus aethiops , HeLa Cells , Host-Parasite Interactions/genetics , Humans , Immunity, Innate/genetics , Interferon Type I/antagonists & inhibitors , Phlebovirus/pathogenicity , Signal Transduction/genetics , Vero Cells
19.
Virus Res ; 227: 231-239, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27777077

ABSTRACT

Interferon stimulated (sensitive) genes (ISGs) are the effector molecules downstream of type I/III interferon (IFN) signaling pathways in host innate immunity. ISG12a can be induced by IFN-α. Although ISG12a has been reported to inhibit the replication of HCV, the exact mechanism remains to be determined. In this study, we investigated the possible mechanisms of ISG12a anti- HCV property by exploring the production of type I IFN and the activation of Janus kinase/signal transducer and activator of transcription (Jak/STAT) signaling pathway, apoptosis and autophagy in Huh7.5.1 cells transiently transfected with ISG12a over-expression plasmid. Interestingly, we found that ISG12a inhibited HCV replication in both Con1b replicon and the HCV JFH1-based cell culture system and potentiated the anti-HCV activity of IFN-α. ISG12a promoted the production of IFN α/ß and activated the type I IFN signaling pathway as shown by increased p-STAT1 level, higher Interferon sensitive response element (ISRE) activity and up-regulated ISG levels. However, ISG12a over-expression did not affect cell autophagy and apoptosis. Data from our current study collectively indicated that ISG12a inhibited HCV replication and potentiated the anti-HCV activity of IFN-α possibly through induced production of type I IFNs and activation of Jak/STAT signaling pathway independent of autophagy and cell apoptosis.


Subject(s)
Hepacivirus/physiology , Interferon-alpha/metabolism , Janus Kinases/metabolism , Membrane Proteins/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Virus Replication , Apoptosis/genetics , Autophagy/genetics , Cell Line , Cells, Cultured , Gene Expression , Hepatitis C/genetics , Hepatitis C/metabolism , Hepatitis C/virology , Humans , Interferon Type I/biosynthesis , Interferon-beta/metabolism , Membrane Proteins/genetics , Signal Transduction/drug effects
20.
Oncotarget ; 8(62): 105923-105935, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29285303

ABSTRACT

Ubiquitin-specific protease 18 (USP18) as a negative regulator of the Jak/STAT signaling pathway plays an important role in the host innate immune response. USP18 has been shown to bind to the type I interferon receptor subunit 2 (IFNAR2) to down-regulate the Jak/STAT signaling. In this study, we showed that insulin receptor substrate (IRS)-4 functioned as a novel USP18-binding protein. Co-precipitation assays revealed that two regions (amino acids 335-400 and 1094-1257) of IRS4 were related to bind to the C- terminal region of USP18. IRS4 binding to USP18 diminished the inhibitory effect of USP18 on Jak/STAT signaling. IRS4 over-expression enhanced while IRS4 knock-down suppressed the Jak/STAT signaling in the presence of IFN-a stimulation. As such, IRS4 increased IFN-a-mediated anti-HCV activity. Mechanistically, IRS4 promoted the IFN-a-induced Jak/STAT signaling by interact with USP18. These results suggested that IRS4 binds to USP18 to diminish the blunting effect of USP18 on IFN-a-induced Jak/STAT signaling. Our findings indicated that IRS4 is a novel USP18-binding protein that can be used to boost the host innate immunity to control HCV, and potentially other viruses that are sensitive to IFN-a.

SELECTION OF CITATIONS
SEARCH DETAIL