Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Appl Opt ; 59(22): G137-G145, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32749326

ABSTRACT

Patterned color filter arrays are important components in digital cameras, camcorders, scanners, and multispectral detection and imaging instruments. In addition to the rapid and continuous progress to improve camera resolution and the efficiency of imaging sensors, research into the design of color filter arrays is important to extend the imaging capability beyond conventional applications. This paper reports the use of colored SU-8 photoresists as a material to fabricate color filter arrays. Optical properties, fabrication parameters, and pattern spatial resolution are systematically studied for five color photoresists: violet, blue, green, yellow, and red. An end-to-end fabrication process is developed to realize a five-color filter array designed for a wide angle multiband artificial compound eye camera system for pentachromatic and polarization imaging. Colored SU-8 photoresists present notable advantages, including patternability, color tunability, low-temperature compatibility, and process simplicity. The results regarding the optical properties and the fabrication process for a colored SU-8 photoresist provide significant insight into its usage as an optical material to investigate nonconventional color filter designs.

2.
Polymers (Basel) ; 16(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931980

ABSTRACT

As microfiber-based additive manufacturing (AM) technologies, melt electrowriting (MEW) and solution electrowriting (SEW) have demonstrated efficacy with more biomedically relevant materials. By processing SU-8 resin using MEW and SEW techniques, a material with substantially different mechanical, thermal, and optical properties than that typically processed is introduced. SU-8 polymer is temperature sensitive and requires the devising of a specific heating protocol to be properly processed. Smooth-surfaced microfibers resulted from MEW of SU8 for a short period (from 30 to 90 min), which provides the greatest control and, thus, reproducibility of the printed microfibers. This investigation explores various parameters influencing the electrowriting process, printing conditions, and post-processing to optimize the fabrication of intricate 3D structures. This work demonstrates the controlled generation of straight filaments and complex multi-layered architectures, which were characterized by brightfield, darkfield, and scanning electron microscopy (SEM). This research opens new avenues for the design and development of 3D-printed photonic systems by leveraging the properties of SU-8 after both MEW and SEW processing.

3.
Adv Mater ; 32(17): e1906512, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32173913

ABSTRACT

The convergence of materials science, electronics, and biology, namely bioelectronic interfaces, leads novel and precise communication with biological tissue, particularly with the nervous system. However, the translation of lab-based innovation toward clinical use calls for further advances in materials, manufacturing and characterization paradigms, and design rules. Herein, a translational framework engineered to accelerate the deployment of microfabricated interfaces for translational research is proposed and applied to the soft neurotechnology called electronic dura mater, e-dura. Anatomy, implant function, and surgical procedure guide the system design. A high-yield, silicone-on-silicon wafer process is developed to ensure reproducible characteristics of the electrodes. A biomimetic multimodal platform that replicates surgical insertion in an anatomy-based model applies physiological movement, emulates therapeutic use of the electrodes, and enables advanced validation and rapid optimization in vitro of the implants. Functionality of scaled e-dura is confirmed in nonhuman primates, where epidural neuromodulation of the spinal cord activates selective groups of muscles in the upper limbs with unmet precision. Performance stability is controlled over 6 weeks in vivo. The synergistic steps of design, fabrication, and biomimetic in vitro validation and in vivo evaluation in translational animal models are of general applicability and answer needs in multiple bioelectronic designs and medical technologies.


Subject(s)
Implantable Neurostimulators , Translational Research, Biomedical , Animals , Biocompatible Materials/chemistry , Biomimetics , Electric Impedance , Electric Stimulation , Equipment Design , Macaca , Microtechnology , Models, Animal , Motor Neurons/physiology , Muscles/physiology , Spinal Cord/physiology
4.
Nanoscale ; 6(3): 1741-7, 2014.
Article in English | MEDLINE | ID: mdl-24346038

ABSTRACT

Cell-derived membrane vesicles that are released in biofluids, like blood or saliva, are emerging as potential non-invasive biomarkers for diseases, such as cancer. Techniques capable of measuring the size and concentration of membrane vesicles directly in biofluids are urgently needed. Fluorescence single particle tracking microscopy has the potential of doing exactly that by labelling the membrane vesicles with a fluorescent label and analysing their Brownian motion in the biofluid. However, an unbound dye in the biofluid can cause high background intensity that strongly biases the fluorescence single particle tracking size and concentration measurements. While such background intensity can be avoided with light sheet illumination, current set-ups require specialty sample holders that are not compatible with high-throughput diagnostics. Here, a microfluidic chip with integrated light sheet illumination is reported, and accurate fluorescence single particle tracking size and concentration measurements of membrane vesicles in cell culture medium and in interstitial fluid collected from primary human breast tumours are demonstrated.


Subject(s)
Biomarkers/metabolism , Biosensing Techniques/methods , Microfluidics/methods , Artifacts , Breast Neoplasms/metabolism , Cell Line, Tumor , Equipment Design , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Humans , Light , Materials Testing , Microfluidic Analytical Techniques , Motion , Particle Size , Scattering, Radiation , Silicon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL