Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 564
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 25(5): 834-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38561495

ABSTRACT

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Subject(s)
Antigens, CD , Apyrase , Integrin alpha Chains , Receptors, Antigen, T-Cell , Signal Transduction , Animals , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Integrin alpha Chains/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology
2.
Nat Immunol ; 23(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34853448

ABSTRACT

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
HLA-B7 Antigen/immunology , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Amino Acid Sequence , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line, Transformed , Female , Gene Expression Profiling , Humans , Immunologic Memory/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
3.
Proc Natl Acad Sci U S A ; 119(12): e2122292119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35298330

ABSTRACT

Aberrant cleavage of amyloid precursor protein (APP) by γ-secretase is closely associated with Alzheimer's disease (AD). γ-secretase activating protein (GSAP) specifically promotes γ-secretase­mediated cleavage of APP. However, the underlying mechanism remains enigmatic. Here, we demonstrate that the 16-kDa C-terminal fragment of GSAP (GSAP-16K) undergoes phase separation in vitro and forms puncta-like condensates in cells. GSAP-16K exerts dual modulation on γ-secretase cleavage; GSAP-16K in dilute phase increases APP­C-terminal 99-residue fragment (C99) cleavage toward preferred production of ß-amyloid peptide 42 (Aß42), but GSAP-16K condensates reduce APP-C99 cleavage through substrate sequestration. Notably, the Aß42/Aß40 ratio is markedly elevated with increasing concentrations of GSAP-16K. GSAP-16K stably associates with APP-C99 through specific sequence elements. These findings mechanistically explain GSAP-mediated modulation of γ-secretase activity that may have ramifications on the development of potential therapeutics.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Humans , Peptide Fragments/metabolism
4.
J Infect Dis ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531686

ABSTRACT

Escherichia coli K1 is the leading cause of neonatal Gram-negative bacterial meningitis, but the pathogenesis of E. coli K1 meningitis remains unclear. Blood-brain barrier (BBB) penetration is a crucial step in E. coli meningitis development. Here, we uncovered the crucial role of CsiR, a GntR family regulator, in E. coli K1 virulence. During infection, csiR expression was induced due to the derepression by Fur in the blood and human brain microvascular endothelial cells (HBMECs). CsiR positively regulated ilvB expression, which is associated with branched chain amino acid synthesis. Furthermore, we revealed that IlvB activated the FAK/PI3 K pathway of HBMECs to induce actin cytoskeleton rearrangements, thereby promoting the bacterial invasion and penetration of the BBB. Overall, this study reveals a CsiR-mediated virulence regulation pathway in E. coli K1, which may provide a useful target for the prevention or therapy of E. coli meningitis.

5.
J Infect Dis ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38330453

ABSTRACT

Urinary tract infections are primarily caused by uropathogenic Escherichia coli (UPEC). UPEC infects bladder epithelial cells (BECs) via fusiform vesicles and escapes into the cytosol by disrupting fusiform vesicle membrane using outer membrane phospholipase PldA, and establishes biofilm-like intracellular bacterial communities (IBCs) for protection from host immune clearance. Cytosolic UPEC is captured by autophagy to form autophagosomes, then transport to lysosomes, triggering the spontaneous exocytosis of lysosomes. The mechanism by which UPEC evades autophagy to recognize and form IBCs remains unclear. Here, we demonstrate that by inhibiting autophagic flux, UPEC PldA reduces the lysosome exocytosis of BECs. By reducing intracellular PI3P levels, UPEC PldA increases the accumulation of NDP52 granules and decreases the targeting of NDP52 to autophagy, hence stalling pre-autophagosome structures. Thus, our results uncover a critical role for PldA to inhibit autophagic flux, favoring UPEC escapes from lysosome exocytosis, thereby contributing to acute UTI.

6.
Mol Carcinog ; 63(3): 538-548, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38051288

ABSTRACT

N6 -methyladenosine (m6 A) modification has been identified as one of the most important epigenetic regulation mechanisms in the development of human cancers. However, the association between m6 A-associated single-nucleotide polymorphisms (m6 A-SNPs) and lung cancer risk remains largely unknown. Here, we identified m6 A-SNPs and examined the association of these m6 A-SNPs with lung cancer risk in 13,793 lung cancer cases and 14,027 controls. In silico functional annotation was used to identify causal m6 A-SNPs and target genes. Furthermore, methylated RNA immunoprecipitation and quantitative real-time polymerase chain reaction (MeRIP-qPCR) assay was performed to assess the m6 A modification level of different genotypes of the causal SNP. In vitro assays were performed to validate the potential role of the target gene in lung cancer. A total of 8794 m6 A-SNPs were detected, among which 397 SNPs in nine susceptibility loci were associated with lung cancer risk, including six novel loci. Bioinformatics analyses indicated that rs1321328 in 6q21 was located around the m6 A modification site of AK9 and significantly reduced AK9 expression (ß = -0.15, p = 2.78 × 10-8 ). Moreover, AK9 was significantly downregulated in lung cancer tissues than that in adjacent normal tissues of samples from the Cancer Genome Atlas and Nanjing Lung Cancer Cohort. MeRIP-qPCR assay suggested that C allele of rs1321328 could significantly decrease the m6 A modification level of AK9 compared with G allele. In vitro assays verified the tumor-suppressing role of AK9 in lung cancer. These findings shed light on the pathogenic mechanism of lung cancer susceptibility loci linked with m6 A modification.


Subject(s)
Adenine , Lung Neoplasms , Polymorphism, Single Nucleotide , Humans , Adenine/analogs & derivatives , Epigenesis, Genetic , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Adenylate Kinase/metabolism
7.
Nanotechnology ; 35(22)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387098

ABSTRACT

BiFeO3is one of the star materials in the field of ferroelectric photovoltaic for its relatively narrow bandgap (2.2-2.7 eV) and better visible light absorption. However, a high temperature over 600 °C is indispensable in the usual BiFeO3growth process, which may lead to impure phase, interdiffusion of components near the interface, oxygen vacancy and ferrous iron ions, which will result in large leakage current and greatly aggravate the ferroelectricity and photoelectric response. Here we prepared Sm, Nd doped epitaxial BiFeO3film via a rapid microwave assisted hydrothermal process at low temperature. The Bi0.9Sm0.5Nd0.5FeO3film exhibits narrow bandgap (1.35 eV) and photo response to red light, the on-off current ratio reaches over 105. The decrease in band gap and +2/+3 variable element doping are responsible for the excellent photo response. The excellent photo response performances are much better than any previously reported BiFeO3films, which has great potential for applications in photodetection, ferroelectric photovoltaic and optoelectronic devices.

8.
Acta Pharmacol Sin ; 45(4): 815-830, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38066346

ABSTRACT

Among the numerous complications of diabetes mellitus, diabetic wounds seriously affect patients' quality of life and result in considerable psychological distress. Promoting blood vessel regeneration in wounds is a crucial step in wound healing. Lonicerin (LCR), a bioactive compound found in plants of the Lonicera japonica species and other honeysuckle plants, exhibits anti-inflammatory and antioxidant activities, and it recently has been found to alleviate ulcerative colitis by enhancing autophagy. In this study we investigated the efficacy of LCR in treatment of diabetic wounds and the underlying mechanisms. By comparing the single-cell transcriptomic data from healing and non-healing states in diabetic foot ulcers (DFU) of 5 patients, we found that autophagy and SIRT signaling activation played a crucial role in mitigating inflammation and oxidative stress, and promoting cell survival in wound healing processes. In TBHP-treated human umbilical vein endothelial cells (HUVECs), we showed that LCR alleviated cell apoptosis, and enhanced the cell viability, migration and angiogenesis. Furthermore, we demonstrated that LCR treatment dose-dependently promoted autophagy in TBHP-treated HUVECs by upregulating Sirt1 expression, and exerted its anti-apoptotic effect through the Sirt1-autophagy axis. Knockdown of Sirt1 significantly decreased the level of autophagy, and mitigated the anti-apoptotic effect of LCR. In a STZ-induced diabetic rat model, administration of LCR significantly promoted wound healing, which was significantly attenuated by Sirt1 knockdown. This study highlights the potential of LCR as a therapeutic agent for the treatment of diabetic wounds and provides insights into the molecular mechanisms underlying its effects.


Subject(s)
Diabetes Mellitus, Experimental , Luteolin , Wound Healing , Animals , Humans , Rats , Autophagy/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Luteolin/pharmacology , Luteolin/therapeutic use , Quality of Life , Sirtuin 1/genetics , Sirtuin 1/metabolism , Wound Healing/drug effects
9.
Skin Res Technol ; 30(2): e13619, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38369908

ABSTRACT

BACKGROUND: Frequent hand washing and disinfection during the corona virus disease (COVID-19) pandemic may lead to skin-related disability. The causal relationship between atopic dermatitis (AD), the most common chronic, noninfectious, inflammatory skin disease, and COVID-19 remains unclear. We used Mendelian randomization (MR) to explore the causal inference of atopic dermatitis with COVID-19 outcomes. METHODS: Genome-wide association study (GWAS) data for AD, consisting of 8383 cases and 236,162 controls of European ethnicity, were provided by the FinnGen database. The GWAS outcome data were derived from the COVID-19 Host Genetics Initiative and consisted of COVID-19 susceptibility (122,616 cases and 2,475,240 controls), hospitalization (32,519 cases and 2,062,805 controls), and very severe respiratory disease (13,769 cases and 1,072,442 controls). The inverse variance weighted with a fixed effects model (IVW (fe)) was used as the main statistical approach to assess the causality between AD and COVID-19 in this study. Several other analytical methods have also been used to complement or identify pleiotropy and heterogeneity. RESULTS: MR analysis showed no causality between AD and COVID-19 outcomes. The odds ratios (OR) were 1.00 (95% confidence interval (CI), 0.99-1.02) for susceptibility, 1.00 (95% CI, 0.96-1.04) for hospitalization, 0.97 (95% CI, 0.92-1.03) for very severe respiratory disease by the method of IVW (fe). CONCLUSION: In conclusion, we found no causal relationship between AD and COVID-19 outcomes. This study provides additional ideas for the exploration of the risk factors for COVID-19.


Subject(s)
COVID-19 , Dermatitis, Atopic , Virus Diseases , Humans , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis
10.
Mar Drugs ; 22(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38921594

ABSTRACT

Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvß3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvß3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvß3. Activation of the integrin αvß3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.


Subject(s)
Blood Platelets , Human Umbilical Vein Endothelial Cells , Sepsis , von Willebrand Factor , Animals , Sepsis/drug therapy , von Willebrand Factor/metabolism , Humans , Mice , Human Umbilical Vein Endothelial Cells/drug effects , Male , Blood Platelets/drug effects , Blood Platelets/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/antagonists & inhibitors , Capillary Permeability/drug effects
11.
Phytother Res ; 38(7): 3352-3369, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642047

ABSTRACT

Osteoarthritis (OA) is a complicated joint disorder characterized by inflammation that causes joint destruction. Cucurbitacin B (CuB) is a naturally occurring triterpenoid compound derived from plants in the Cucurbitaceae family. The aim of this study is to investigate the potential role and mechanisms of CuB in a mouse model of OA. This study identified the key targets and potential pathways of CuB through network pharmacology analysis. In vivo and in vitro studies confirmed the potential mechanisms of CuB in OA. Through network pharmacology, 54 potential targets for CuB in treating OA were identified. The therapeutic potential of CuB is associated with the nod-like receptor pyrin domain 3 (NLRP3) inflammasome and pyroptosis. Molecular docking results indicate a strong binding affinity of CuB to nuclear factor erythroid 2-related factor 2 (Nrf2) and p65. In vitro experiments demonstrate that CuB effectively inhibits the expression of pro-inflammatory factors induced by interleukin-1ß (IL-1ß), including cyclooxygenase-2, inducible nitric oxide synthase, IL-1ß, and IL-18. CuB inhibits the degradation of type II collagen and aggrecan in the extracellular matrix (ECM), as well as the expression of matrix metalloproteinase-13 and a disintegrin and metalloproteinase with thrombospondin motifs-5. CuB protects cells by activating the Nrf2/hemeoxygenase-1 (HO-1) pathway and inhibiting nuclear factor-κB (NF-κB)/NLRP3 inflammasome-mediated pyroptosis. Moreover, in vivo experiments show that CuB can slow down cartilage degradation in an OA mouse model. CuB effectively prevents the progression of OA by inhibiting inflammation in chondrocytes and ECM degradation. This action is further mediated through the activation of the Nrf2/HO-1 pathway to inhibit NF-κB/NLRP3 inflammasome activation. Thus, CuB is a potential therapeutic agent for OA.


Subject(s)
Heme Oxygenase-1 , Inflammasomes , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Osteoarthritis , Pyroptosis , Triterpenes , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-E2-Related Factor 2/metabolism , Osteoarthritis/drug therapy , Mice , Triterpenes/pharmacology , Triterpenes/chemistry , Pyroptosis/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Heme Oxygenase-1/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Chondrocytes/drug effects , Chondrocytes/metabolism , Signal Transduction/drug effects , Molecular Docking Simulation , Membrane Proteins/metabolism
12.
Mikrochim Acta ; 191(4): 217, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38519619

ABSTRACT

Hypoxia, a significant feature of the tumor microenvironment, is closely associated with tumor growth, metastasis, and drug resistance. In the field of tumor microenvironment analysis, accurately imaging and quantifying hypoxia - a critical factor associated with tumor progression, metastasis, and resistance to therapy - remains a significant challenge. Herein, a hypoxia-activated red-emission fluorescent probe, ODP, for in vivo imaging of hypoxia in the tumor microenvironment is presented. Among various imaging methods, optical imaging is particularly convenient due to its rapid response and high sensitivity. The ODP probe specifically targets nitroreductase (AzoR), an enzyme highly expressed in hypoxic cells, playing a vital role by catalyzing the cleavage of azo bonds. The optical properties of ODP exhibited excellent performance in terms of fluorescence enhancement, fluorescence lifetime (0.81 ns), and detection limit (0.86 µM) in response to SDT. Cell imaging experiments showed that ODP could effectively detect and image intracellular hypoxia and the imaging capability of ODP was studied under various conditions including cell migration, antioxidant treatment, and different incubation times. Through comprehensive in vitro and in vivo experiments, including cellular imaging and mouse tumor models, this work demonstrates the efficacy of ODP in accurately detecting and imaging hypoxia. Moreover, ODP's potential in inducing apoptosis in cancer cells offers a promising avenue for integrating diagnostic and therapeutic strategies in cancer treatment. This innovative approach not only contributes to the understanding and assessment of tumor hypoxia but also opens new possibilities for targeted cancer therapy.


Subject(s)
Fluorescent Dyes , Neoplasms , Mice , Animals , Fluorescent Dyes/chemistry , Tumor Microenvironment , Microscopy, Fluorescence/methods , Hypoxia , Optical Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
13.
Ren Fail ; 46(2): 2376935, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38982728

ABSTRACT

BACKGROUND: In some resource-limited regions, the placement of tunneled dialysis catheters (TDC) is often preferred under ultrasound guidance rather than fluoroscopy. This study compared ultrasound-and digital subtraction angiography-guided (DSA)-guided TDC in renal replacement therapy. METHODS: This retrospective cohort study included all TDC placements performed at our hospital between January 2020 and October 2022. We utilized 1:1 propensity score matching (PSM) to balance the demographic and clinical characteristics of the DSA-guided and ultrasound-guided groups. Dialysis prescriptions and actual dialysis completion were assessed using intraclass correlation coefficients (ICC). Multivariable logistic regression analyses determined the risk factors for early termination of dialysis. The differences in adverse events, catheter function, and catheter tip position were evaluated between the two groups. RESULTS: The study included 261 patients (142 in the DSA-guided group and 119 in the ultrasound-guided group). After PSM, 91 patients were included in each group, with no significant baseline differences (p > .1). Both groups achieved adequate catheter blood flow and ultrafiltration volumes without deviations from dialysis prescriptions (ICC ≥ 0.75). The DSA-guided group had fewer early dialysis terminations than the ultrasound-guided group (3.3 vs. 12.0%, p = .026). The position of the catheter tip in the right atrium was more consistent in the DSA-guided group (100 vs. 74.2%, p < .001). CONCLUSION: Hemodialysis catheters inserted under DSA guidance exhibited superior performance compared to those inserted under ultrasound guidance, primarily due to more accurate catheter tip positioning. DSA guidance is recommended when ensuring optimal catheter tip placement.


Subject(s)
Angiography, Digital Subtraction , Feasibility Studies , Propensity Score , Renal Dialysis , Ultrasonography, Interventional , Humans , Male , Female , Retrospective Studies , Middle Aged , Renal Dialysis/instrumentation , Renal Dialysis/methods , Aged , Catheterization, Central Venous/methods , Catheterization, Central Venous/adverse effects , Catheterization, Central Venous/instrumentation , Adult , Catheters, Indwelling
14.
Hum Brain Mapp ; 44(6): 2607-2619, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36807959

ABSTRACT

Internet gaming disorder (IGD) and tobacco use disorder (TUD) are globally common, non-substance-related disorders and substance-related disorders worldwide, respectively. Recognizing the commonalities between IGD and TUD will deepen understanding of the underlying mechanisms of addictive behavior and excessive online gaming. Using node strength, 141 resting-state data were collected in this study to compute network homogeneity. The participants included participants with IGD (PIGD: n = 34, male = 29, age: 15-25 years), participants with TUD (PTUD: n = 33, male = 33, age: 19-42 years), and matched healthy controls (control-for-IGD: n = 41, male = 38, age: 17-32 years; control-for-TUD: n = 33, age: 21-27 years). PIGD and PTUD exhibited common enhanced node strength between the subcortical and motor networks. Additionally, a common enhanced resting-state functional connectivity (RSFC) was found between the right thalamus and right postcentral gyrus in PIGD and PTUD. Node strength and RSFC were used to distinguish PIGD and PTUD from their respective healthy controls. Interestingly, models trained on PIGD versus controls could classify PTUD versus controls and vice versa, suggesting that these disorders share common neurological patterns. Enhanced connectivity may indicate a greater association between rewards and behaviors, inducing addiction behaviors without flexible and complex regulation. This study discovered that the connectivity between the subcortical and motor networks is a potential biological target for developing addiction treatment in the future.


Subject(s)
Tobacco Use Disorder , Video Games , Humans , Male , Adolescent , Young Adult , Adult , Tobacco Use Disorder/diagnostic imaging , Brain Mapping , Internet Addiction Disorder/diagnostic imaging , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Internet , Brain/diagnostic imaging
15.
BMC Med ; 21(1): 96, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927608

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (MSCs) pretreated with atorvastatin (ATV) (MSCATV-EV) have a superior cardiac repair effect on acute myocardial infarction (AMI). The mechanisms, however, have not been fully elucidated. This study aims to explore whether inflammation alleviation of infarct region via macrophage polarization plays a key role in the efficacy of MSCATV-EV. METHODS: MSCATV-EV or MSC-EV were intramyocardially injected 30 min after coronary ligation in AMI rats. Macrophage infiltration and polarization (day 3), cardiac function (days 0, 3, 7, 28), and infarct size (day 28) were measured. EV small RNA sequencing and bioinformatics analysis were conducted for differentially expressed miRNAs between MSCATV-EV and MSC-EV. Macrophages were isolated from rat bone marrow for molecular mechanism analysis. miRNA mimics or inhibitors were transfected into EVs or macrophages to analyze its effects on macrophage polarization and cardiac repair in vitro and in vivo. RESULTS: MSCATV-EV significantly reduced the amount of CD68+ total macrophages and increased CD206+ M2 macrophages of infarct zone on day 3 after AMI compared with MSC-EV group (P < 0.01-0.0001). On day 28, MSCATV-EV much more significantly improved the cardiac function than MSC-EV with the infarct size markedly reduced (P < 0.05-0.0001). In vitro, MSCATV-EV also significantly reduced the protein and mRNA expressions of M1 markers but increased those of M2 markers in lipopolysaccharide-treated macrophages (P < 0.05-0.0001). EV miR-139-3p was identified as a potential cardiac repair factor mediating macrophage polarization. Knockdown of miR-139-3p in MSCATV-EV significantly attenuated while overexpression of it in MSC-EV enhanced the effect on promoting M2 polarization by suppressing downstream signal transducer and activator of transcription 1 (Stat1). Furthermore, MSCATV-EV loaded with miR-139-3p inhibitors decreased while MSC-EV loaded with miR-139-3p mimics increased the expressions of M2 markers and cardioprotective efficacy. CONCLUSIONS: We uncovered a novel mechanism that MSCATV-EV remarkably facilitate cardiac repair in AMI by promoting macrophage polarization via miR-139-3p/Stat1 pathway, which has the great potential for clinical translation.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Myocardial Infarction , Rats , Animals , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Atorvastatin/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Macrophages/metabolism , STAT1 Transcription Factor/metabolism
16.
J Transl Med ; 21(1): 371, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291585

ABSTRACT

The transcription factor family activator protein 2 (TFAP2) is vital for regulating both embryonic and oncogenic development. The TFAP2 family consists of five DNA-binding proteins, including TFAP2A, TFAP2B, TFAP2C, TFAP2D and TFAP2E. The importance of TFAP2 in tumor biology is becoming more widely recognized. While TFAP2D is not well studied, here, we mainly focus on the other four TFAP2 members. As a transcription factor, TFAP2 regulates the downstream targets directly by binding to their regulatory region. In addition, the regulation of downstream targets by epigenetic modification, posttranslational regulation, and interaction with noncoding RNA have also been identified. According to the pathways in which the downstream targets are involved in, the regulatory effects of TFAP2 on tumorigenesis are generally summarized as follows: stemness and EMT, interaction between TFAP2 and tumor microenvironment, cell cycle and DNA damage repair, ER- and ERBB2-related signaling pathway, ferroptosis and therapeutic response. Moreover, the factors that affect TFAP2 expression in oncogenesis are also summarized. Here, we review and discuss the most recent studies on TFAP2 and its effects on carcinogenesis and regulatory mechanisms.


Subject(s)
Neoplasms , Transcription Factors , Humans , Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Neoplasms/genetics , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism
17.
Blood ; 138(14): 1211-1224, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34115843

ABSTRACT

Megakaryocytes (MKs), the platelet progenitor cells, play important roles in hematopoietic stem cell (HSC) maintenance and immunity. However, it is not known whether these diverse programs are executed by a single population or by distinct subsets of cells. Here, we manually isolated primary CD41+ MKs from the bone marrow (BM) of mice and human donors based on ploidy (2N-32N) and performed single-cell RNA sequencing analysis. We found that cellular heterogeneity existed within 3 distinct subpopulations that possess gene signatures related to platelet generation, HSC niche interaction, and inflammatory responses. In situ immunostaining of mouse BM demonstrated that platelet generation and the HSC niche-related MKs were in close physical proximity to blood vessels and HSCs, respectively. Proplatelets, which could give rise to platelets under blood shear forces, were predominantly formed on a platelet generation subset. Remarkably, the inflammatory responses subpopulation, consisting generally of low-ploidy LSP1+ and CD53+ MKs (≤8N), represented ∼5% of total MKs in the BM. These MKs could specifically respond to pathogenic infections in mice. Rapid expansion of this population was accompanied by strong upregulation of a preexisting PU.1- and IRF-8-associated monocytic-like transcriptional program involved in pathogen recognition and clearance as well as antigen presentation. Consistently, isolated primary CD53+ cells were capable of engulfing and digesting bacteria and stimulating T cells in vitro. Together, our findings uncover new molecular, spatial, and functional heterogeneity within MKs in vivo and demonstrate the existence of a specialized MK subpopulation that may act as a new type of immune cell.


Subject(s)
Mice/genetics , Single-Cell Analysis , Thrombopoiesis , Transcriptome , Animals , Cells, Cultured , Female , Humans , Male , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice/physiology , Mice, Inbred C57BL , Platelet Membrane Glycoprotein IIb/analysis , Platelet Membrane Glycoprotein IIb/genetics , Ploidies
18.
Pancreatology ; 23(7): 843-851, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37739874

ABSTRACT

BACKGROUND: The incidence of clinically relevant postoperative pancreatic fistula (CR-POPF) after central pancreatectomy (CP) is high, yet an effective predictive method is currently lacking. This study aimed to predict CR-POPF after CP by utilizing existing fistula risk scores (FRSs) for pancreaticoduodenectomy (PD) and distal pancreatectomy (DP). METHODS: A retrospective analysis was conducted on patients undergoing CP at our institution between January 2010 and July 2022. The primary outcome was CR-POPF (grade B/C) according to the 2016 International Study Group of Pancreatic Surgery definition. To establish predictive models for CR-POPF after CP, we combined the FRSs for PD and DP using a calculation formula that considers the probability of the union of two events. As a result, we obtained twelve central FRS (C-FRS) models. The performance of each C-FRS was assessed using the area under the curves (AUC) and calibration plots. RESULTS: A total of 115 patients undergoing CP were included. Among them, 38 (33%) were male, with a median age of 53 years. CR-POPF occurred in 35 (30.4%) patients, specifically 33 (28.7%) with grade B and 2 (1.7%) with grade C. Multivariate analysis showed that body mass index (BMI) [odds ratio (OR) 1.260, 95% confidence interval (CI) 1.039-1.528, P = 0.019), pancreatic thickness at the cephalic transection site (OR 1.228, 95% CI 1.074-1.405, P = 0.003), cephalic main pancreatic duct (MPD) size (OR 41.872, 95%CI 7.614-230.265, P < 0.001), and distal MPD size (OR 0.142, 95% CI 0.036-0.561, P = 0.005) were independent predictive factors for CR-POPF. Discrimination was generally acceptable for all C-FRS models, with an AUC ranging from 0.748 (DISPAIR-a-FRS: 95% CI, 0.659-0.824) to 0.847 (Intraop-D-a-FRS: 95% CI, 0.768-0.907). The models were calibrated with adequate Brier scores ranging from 0.157 to 0.183. The performance in all subgroups was similar as that of the entire cohort. Three preoperative risk groups (low, intermediate, and high) were identified based on the clinical applicability of the Preop-D-Roberts-FRS, with corresponding incidences of CR-POPF as 0% (0/24), 30% (21/70), and 66.7% (14/21), respectively. CONCLUSION: The derived C-FRS models show potential for accurately predicting the development of CR-POPF after CP. However, further validation studies are required to determine the most effective model. In the meantime, the Preop-D-Roberts-FRS is recommended for clinical practice due to its ease of use and preoperative predictability.


Subject(s)
Pancreatectomy , Pancreaticoduodenectomy , Humans , Male , Middle Aged , Female , Pancreatectomy/adverse effects , Pancreatectomy/methods , Pancreaticoduodenectomy/adverse effects , Pancreaticoduodenectomy/methods , Pancreatic Fistula/epidemiology , Pancreatic Fistula/etiology , Pancreatic Fistula/surgery , Retrospective Studies , Risk Assessment/methods , Risk Factors , Pancreatic Hormones , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/surgery
19.
Liver Int ; 43(1): 221-233, 2023 01.
Article in English | MEDLINE | ID: mdl-36300678

ABSTRACT

BACKGROUND AND AIMS: Observational epidemiology studies suggested a relationship between the gut microbiome and primary liver cancer. However, the causal relationship remains unclear because of confounding factors and reverse causality. We aimed to explore the causal role of the gut microbiome in the development of primary liver cancer, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). METHODS: Mendelian randomization (MR) study was conducted using summary statistics from genome-wide association studies (GWAS) of the gut microbiome and liver cancer, and sequencing data from a case-control study validated the findings. A 5-cohort GWAS study in Germany (N = 8956) served as exposure, whilst the UK biobank GWAS study (N = 456 348) served as an outcome. The case-control study was conducted at the First Affiliated Hospital of Wenzhou Medical University from December 2018 to October 2020 and included 184 HCC patients, 63 ICC patients and 40 healthy controls. RESULTS: A total of 57 features were available for MR analysis, and protective causal associations were identified for Family_Ruminococcaceae (OR = 0.46 [95% CI, 0.26-0.82]; p = .009) and Genus_Porphyromonadaceae (OR = 0.59 [95% CI, 0.42-0.83]; p = .003) with HCC, and for Family_Porphyromonadaceae (OR = 0.36 [95% CI, 0.14-0.94]; p = .036) and Genus_Bacteroidetes (OR = 0.55 [95% CI, 0.34-0.90]; p = .017) with ICC respectively. The case-control study results showed that the healthy controls had a higher relative abundance of Family_Ruminococcaceae (p = .00033), Family_Porphyromonadaceae (p = .0055) and Genus_Bacteroidetes (p = .021) than the liver cancer patients. CONCLUSIONS: This study demonstrates that Ruminococcaceae, Porphyromonadaceae and Bacteroidetes are related to a reduced risk of liver cancer (HCC or ICC), suggesting potential significance for the prevention and control of liver cancer.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Gastrointestinal Microbiome , Liver Neoplasms , Humans , Gastrointestinal Microbiome/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Case-Control Studies , Genome-Wide Association Study , Mendelian Randomization Analysis , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic , Polymorphism, Single Nucleotide
20.
Eur J Neurol ; 30(11): 3471-3477, 2023 11.
Article in English | MEDLINE | ID: mdl-37159496

ABSTRACT

BACKGROUND AND PURPOSE: Parkinson disease (PD)-associated alterations in the gut microbiome have been observed in clinical and animal studies. However, it remains unclear whether this association reflects a causal effect in humans. METHODS: We performed two-sample bidirectional Mendelian randomization using summary statistics from the international consortium MiBioGen (N = 18,340), the Framingham Heart Study (N = 2076), and the International Parkinson's Disease Genomics Consortium for PD (33,674 cases and 449,056 controls) and PD age at onset (17,996 cases). RESULTS: Twelve microbiota features presented suggestive associations with PD risk or age at onset. Genetically increased Bifidobacterium levels correlated with decreased PD risk (odds ratio = 0.77, 95% confidence interval [CI] = 0.60-0.99, p = 0.040). Conversely, high levels of five short-chain fatty acid (SCFA)-producing bacteria (LachnospiraceaeUCG010, RuminococcaceaeUCG002, Clostridium sensustricto1, Eubacterium hallii group, and Bacillales) correlated with increased PD risk, and three SCFA-producing bacteria (Roseburia, RuminococcaceaeUCG002, and Erysipelatoclostridium) correlated with an earlier age at PD onset. Gut production of serotonin was associated with an earlier age at PD onset (beta = -0.64, 95% CI = -1.15 to -0.13, p = 0.013). In the reverse direction, genetic predisposition to PD was related to altered gut microbiota composition. CONCLUSIONS: These results support a bidirectional relationship between gut microbiome dysbiosis and PD, and highlight the role of elevated endogenous SCFAs and serotonin in PD pathogenesis. Future clinical studies and experimental evidence are needed to explain the observed associations and to suggest new therapeutic approaches, such as dietary probiotic supplementation.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Animals , Humans , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Parkinson Disease/genetics , Serotonin , Genetic Predisposition to Disease , Genome-Wide Association Study
SELECTION OF CITATIONS
SEARCH DETAIL