Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Angew Chem Int Ed Engl ; 63(17): e202401372, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38390783

ABSTRACT

Herein, we present the first report on the synthesis of rare-earth complexes featuring a 9,10-diborataanthracene ligand. This 14-π-electron ligand is highly reductive and was previously used in small-molecule activation. Salt elimination reactions between dipotassium 9,10-diethyl-9,10-diborataanthracene [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] (CotTIPS=1,4-(iPr3Si)2C8H6) in a 1 : 1 ratio yielded heteroleptic sandwich complexes [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Y, Dy, Er). These compounds form Lewis-base-free one-dimensional coordination polymers when crystallised from toluene. In contrast, reaction of [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] in a 1 : 2 ratio led to the formation of heteroleptic triple-decker complexes [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Y, Dy, Er). Notably, these are not only the first lanthanide triple-decker compounds featuring a six-membered ring as a deck but also the first trivalent lanthanide triple-decker featuring a heterocycle in the coordination sphere. Magnetic investigations reveal that [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Dy, Er) and [(η8-CotTIPS)ErIII(µ-η6:η6-DEDBA)ErIII(η8-CotTIPS)] exhibit Single-Molecule Magnet (SMM) behaviour. In the case of [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Dy, Er), the introduction of a second near lanthanide ion results in strong antiferromagnetic interactions, allowing the enhancement of the magnetic characteristic of the system, compared to the quasi isolated counterpart. This research renews the overlooked coordination chemistry of the DBA ligand and expands it to encompass rare-earth elements.

2.
Mol Pharm ; 20(3): 1717-1728, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36809003

ABSTRACT

Chemodynamic therapy (CDT) that involves the use of Fenton catalysts to convert endogenous hydrogen peroxide (H2O2) to hydroxyl radicals (·OH) constitutes a promising strategy for cancer therapy; however, insufficient endogenous H2O2 and glutathione (GSH) overexpression render its efficiency unsatisfactory. Herein, we present an intelligent nanocatalyst that comprises copper peroxide nanodots and DOX-loaded mesoporous silica nanoparticles (MSNs) (DOX@MSN@CuO2) and can self-supply exogenous H2O2 and respond to specific tumor microenvironments (TME). Following endocytosis into tumor cells, DOX@MSN@CuO2 initially decomposes into Cu2+ and exogenous H2O2 in the weakly acidic TME. Subsequently, Cu2+ reacts with high GSH concentrations, thereby inducing GSH depletion and reducing Cu2+ to Cu+ Next, the generated Cu+ undergoes Fenton-like reactions with exogenous H2O2 to accelerate toxic ·OH production, which exhibits a rapid reaction rate and is responsible for tumor cell apoptosis, thereby enhancing CDT. Furthermore, the successful delivery of DOX from the MSNs achieves chemotherapy and CDT integration. Thus, this excellent strategy can resolve the problem of insufficient CDT efficacy due to limited H2O2 and GSH overexpression. Integrating H2O2 self-supply and GSH deletion enhances CDT, and DOX-induced chemotherapy endows DOX@MSN@CuO2 with effective tumor growth-inhibiting properties alongside minimal side effects in vivo.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Neoplasms , Humans , Copper , Hydrogen Peroxide , Glutathione , Cell Line, Tumor , Tumor Microenvironment
3.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882781

ABSTRACT

Gardenia fruit (GF) is the mature fruit of Gardenia jasminoides Ellis, boasting a rich array of nutrients and phytochemicals. Over time, GF has been extensively utilized in both food and medicinal contexts. In recent years, numerous studies have delved into the chemical constituents of GF and their associated pharmacological activities, encompassing its phytochemical composition and health-promoting properties. This review aims to provide a critical and comprehensive summary of GF research, covering nutrient content, extraction technologies, and potential health benefits, offering new avenues for future investigations and highlighting its potential as an innovative food resource. Additionally, the review proposes novel industrial applications for GF, such as utilizing gardenia yellow/red/blue pigments in the food industry and incorporating it with other herbs in traditional Chinese medicine. By addressing current challenges in developing GF-related products, this work provides insights for potential applications in the cosmetics, food, and health products industries. Notably, there is a need for the development of more efficient extraction methods to harness the nutritional components of GF fully. Further research is needed to understand the specific molecular mechanisms underlying its bioactivities. Exploring advanced processing techniques to create innovative GF-derived products will show great promise for the future.

4.
J Environ Sci (China) ; 120: 105-114, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35623764

ABSTRACT

Catalytic wet air oxidation (CWAO) coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater. Chloride widely occurs in natural and wastewaters, and its high content jeopardizes the efficacy of Advanced oxidation process (AOPs). Thus, a novel chlorine ion resistant catalyst B-site Ru doped LaFe1-xRuxO3-δ in CWAO treatment of chlorine ion wastewater was examined. Especially, LaFe0.85Ru0.15O3-δ was 45.5% better than that of the 6%RuO2@TiO2 (commercial carrier) on total organic carbon (TOC) removal. Also, doped catalysts LaFe1-xRuxO3-δ showed better activity than supported catalysts RuO2@LaFeO3 and RuO2@TiO2 with the same Ru content. Moreover, LaFe0.85Ru0.15O3-δ has novel chlorine ion resistance no matter the concentration of Cl- and no Ru dissolves after the reaction. X-ray diffraction (XRD) refinement, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and X-ray absorption fine structure (XAFS) measurements verified the structure of LaFe0.85Ru0.15O3-δ. Kinetic data and density functional theory (DFT) proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions. The existence of Fe in LaFe0.85Ru0.15O3-δ could adsorb chlorine ion (catalytic activity inhibitor), which can protect the Ru site and other active oxygen species to exert catalytic activity. This work is essential for the development of chloride-resistant catalyst in CWAO.


Subject(s)
Salinity , Wastewater , Catalysis , Chlorides , Chlorine
5.
Chemistry ; 27(61): 15127-15135, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34328235

ABSTRACT

Heterometallic complexes, combining metals of the outer rims of the d-block, for example lanthanides(III) (Ln) and coinage metals(I) (M) are scarcely reported, synthetically challenging and highly interesting in terms of their interactions. In this context, we synthesized hetero-bimetallic Ln-M compounds ligated by the phosphine functionalized amidinate system (N,N'-bis[(2-diphenylphosphino)phenyl]formamidinate, "dpfam"). The resulting compounds [dpfam3 LnM][OTf] (Ln = La, Nd and M = Ag, Au) feature a close proximity of the two metal centres and were investigated experimentally by photoluminescence spectroscopy and quantum chemical calculations. The latter showed rare La-Au interactions for the first excited state.

6.
Water Sci Technol ; 84(3): 697-711, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34388128

ABSTRACT

Carboxylic acids are the main pollutant of industrial wastewater during the advanced oxidation process (AOPs). In this study, a resin-based spherical activated carbon (RSAC, AF5) as an adsorbent was examined and acetic acid was used as a model substrate for adsorption investigation. The pH = 3, temperature = 298 K were fixed by batch technique. The pseudo-second-order kinetic model, the intraparticle and external models are fitted well, and it was found that the adsorption of acetic acid onto AF5 was controlled by liquid film diffusion. A Freundlich model indicated that the adsorption process was heterogeneous multimolecular layer adsorption on the surface. AF5 shows good regenerative ability; the recovery rate of adsorption capacity was ∼88% after five cycles. Chemical oxygen demand (COD) adsorption removal rate could be maintained at 100% for over 35 h in an actual AOPs effluent, and could be eluted for 100% after 8 h by 0.8wt% NaOH. Characterizations, including XRF, XRD, TG/DSC,FTIR, SEM and N2 adsorption, showed that the excellent adsorption performance was mainly due to the microporous structure and large specific surface area (1,512.88 m2/g), the adsorption mechanism mainly included pore filling effect and electrostatic attraction. After five adsorption recycles, AF5's pore characteristic did not change significantly. This study provides a scientific basis for the wastewater standard discharge process of AOPs coupled adsorption.


Subject(s)
Charcoal , Water Pollutants, Chemical , Acetic Acid , Adsorption , Diffusion , Hydrogen-Ion Concentration , Kinetics , Thermodynamics
8.
Toxicol Mech Methods ; 24(7): 461-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24965839

ABSTRACT

Titanium dioxide nanoparticles (nano-TiO2) have been widely applied in daily life and subsequent problem on the potential health risk are raised. Studies on the toxicity of nano-TiO2 have shown that they could lead to toxic effects on human and environment. However, the mechanisms are still unclear. We investigated the change of amino acid levels in L929 cells after nano-TiO2 exposure using gas chromatography with time-of-flight mass spectrometry (GC/TOFMS)-based metabolomics approach. Spectral profiles were subjected to multivariate statistics, namely, Principal Component Analysis (PCA), and Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA). Using MetaboAnalyst 2.0, it was found that 7 metabolic pathways (impact-value >0.10) among the regulated pathways were significantly perturbed. Twelve distinct amino acids are identified from these pathways, including L-α-alanine, ß-alanine, glycine, L-aspartate, L-methionine, L-cysteine, glutamate, L-pyroglutamate, L-asparagine, L-glutamine, S-adenosylmethionine, and L-lysine. These results show that the disturbed amino acids played an important role in the nano-TiO2-induced cytotoxicity. Along with earlier findings, we successfully used the metabolomics approaches to manifest nano-TiO2 toxicity through triggering cellular oxidative stress, energy damage and the inhibition of DNA and RNA synthesis.


Subject(s)
Amino Acids/metabolism , Fibroblasts/drug effects , Metabolomics , Metal Nanoparticles/toxicity , Titanium/toxicity , Animals , Cell Line , Fibroblasts/metabolism , Gas Chromatography-Mass Spectrometry , Mice , Principal Component Analysis
9.
Food Chem ; 445: 138682, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38350196

ABSTRACT

Food matrices greatly impact TBBQ content during digestion, while lacking sufficient research and understanding. This study investigated the influence and mechanism of fried foods on the TBBQ-eliminated performance during in-vitro digestion. The results indicated that TBBQ content varied significantly among food matrices after in-vitro digestion, with the highest in peanuts (38.3%). The correlation analysis revealed that proteins remarkably facilitated TBBQ-eliminations while fats decreased the TBBQ-eliminated rate. The TBBQ-eliminated performance of proteins, protein digestive mixtures, and amino acids uncovered that sulfhydryl groups were crucial reactive groups to eliminate TBBQ, and TBBQ-eliminated rates under intestinal pH (8.0) were faster than gastric pH (1.5). Additionally, fats significantly reduced the protein-triggered TBBQ-eliminations, originating that the oil-water interface increased the interaction difficulty between lipophilic TBBQ and proteins. Thus, this work provided an in-depth understanding of food matrices (especially proteins and fats) in TBBQ eliminations to enlighten the promising TBBQ-risk-reduced strategies with high-protein and low-fat foods.


Subject(s)
Food , Intestines , Digestion
10.
Chemosphere ; 346: 140606, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939928

ABSTRACT

H2O2 is widely used in the treatment of refractory organic pollutants.However, due to its explosive and corrosive chemical characteristics, H2O2 will bring great safety risks and troubles in transportation.So we chose sodium percarbonate(SPC) to be used in catalytic wet peroxide oxidation enhanced by swirl flow(SF-CWPO) and we designed carbon nanotubes with Ni single atom sites(Ni-NCNTs/AC) to activate SPC to treat an m-cresol wastewater containing Si.Meanwhile, artificial intelligence which used Artificial neural network (ANN) was used to optimize the conditions.Under the conditions of pH = 9.27, reaction time of 8.91 min, m-cresol concentration is 59.09 mg L-1, SPC dosage is 2.80 g L-1 and Na2SiO3·9H2O dosage is 77.27 mg L-1, the degradation rate of total organic carbon(TOC) and m-cresol reaches 94.37% and 100%, respectively.Finally, the applicability of Ni-NCNTs/AC-SPC-SF-CWPO technology was evaluated in a wastewater system of a sewage treatment enterprise and Fourier transform ion cyclotron resonance mass spectrum(FT-ICR MS) analysis and chemical oxygen demand(COD) analysis showed the great ability of Ni-NCNTs/AC-SPC-SF-CWPO technology to treat wastewater.It is believed that this paper is of great significance to the design and construction of the in-depth research and industrial application of SF-CWPO.


Subject(s)
Nanotubes, Carbon , Water Pollutants, Chemical , Hydrogen Peroxide , Wastewater , Silicon , Artificial Intelligence , Peroxides , Oxidation-Reduction , Catalysis
11.
J Appl Toxicol ; 33(12): 1442-50, 2013 Dec.
Article in English | MEDLINE | ID: mdl-22996321

ABSTRACT

As titanium dioxide (TiO(2)) nanoparticles are widely used commercially, their potential biosafety and metabolic mechanism needs to be fully explained. In this study, the cytotoxicity of homogeneous and weakly aggregated (< 100 nm) TiO(2) nanoparticles was investigated by analyzing the changes in metabolite profiles both in mouse fibroblast (L929) cells and their corresponding culture media using gas chromatograph with a time-of-flight mass spectrometry (GC/TOFMS)-based metabolomic strategy. With multivariate statistics analysis, satisfactory separations were observed in principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) models. Based on the variable importance in the OPLS-DA models, a series of differential metabolites were identified by comparison between TiO(2) nanoparticle-treated L929 cells or their corresponding culture media and the control groups. It was found that the major biochemical metabolism (carbohydrate metabolism) was suppressed in TiO(2) nanoparticle-treated L929 cells and their corresponding culture media. These results might account for the serious damage to energy metabolism in mitochondria and the increased cellular oxidation stress in TiO(2) nanoparticle-induced L929 cells. These results also suggest that the metabolomic strategy had a great potential in evaluating the cytotoxicity of TiO(2) nanoparticles and thus was very helpful in understanding its underlying molecular mechanisms.


Subject(s)
Carbohydrate Metabolism/drug effects , Fibroblasts/drug effects , Metabolome/drug effects , Nanoparticles/toxicity , Titanium/toxicity , Animals , Cell Culture Techniques , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Fibroblasts/pathology , Gas Chromatography-Mass Spectrometry , Least-Squares Analysis , Mice , Microscopy, Electron, Transmission , Principal Component Analysis
12.
Food Sci Biotechnol ; 32(14): 2043-2055, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37860735

ABSTRACT

Gardenia jasminoides Ellis, a representative for "homology of medicine and food", can be used to produce pigment and edible oil. Here, aqueous enzymatic extraction (AEE) combined with puffing pre-treatment was explored to prepare oil from gardenia seeds. Both wet-heating puffing (WP) at 90 °C and dry-heating puffing (DP) at 1.0 MPa facilitated the release of free oil by AEE, resulting in the highest free oil yields (FOY) of 21.8% and 23.2% within 3 h, much higher than that of un-puffed group. Additionally, active crocin and geniposide were also completely released. The FOY obtained was much higher than mechanical pressing method (10.44%), and close to solvent extraction (25.45%). Microstructure analysis indicated that gardenia seeds expanded by dry-heating puffing (1.0 MPa) had a larger, rougher surface and porous structure than other groups. Overall, AEE coupled with puffing pre-treatment developed is an eco-friendly extraction technology with high efficiency that can be employed to oil preparation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01319-9.

13.
Dalton Trans ; 52(46): 17389-17397, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37942816

ABSTRACT

[V2(HCyclal)2] is prepared by controlled oxidation of vanadium nanoparticles at 50 °C in toluene. The V(0) nanoparticles are synthesized in THF by reduction of VCl3 with lithium naphthalenide. They exhibit very small particle sizes of 1.2 ± 0.2 nm and a high reactivity (e.g. with air or water). By reaction of V(0) nanoparticles with the azacrown ether H4Cyclal, [V2(HCyclal)2] is obtained with deep green crystals and high yield. The title compound exhibits a V(III) dimer (V⋯V: 304.1(1) pm) with two deprotonated [HCyclal]3- ligands as anions. V(0) nanoparticles as well as the sole coordination of V(III) by a crown ether as the ligand and nitrogen as sole coordinating atom are shown for the first time. Magnetic measurements and computational results point to antiferromagnetic coupling within the V(III) couple, establishing an antiferromagnetic spin S = 1 dimer with the magnetic susceptibility determined by the thermal population of the total spin ranging from ST = 0 to ST = 2.

14.
Front Immunol ; 14: 1251028, 2023.
Article in English | MEDLINE | ID: mdl-37781362

ABSTRACT

Aims: Understanding the cellular mechanisms underlying early allograft rejection is crucial for the development of effective immunosuppressant strategies. This study aims to investigate the cellular composition of graft-infiltrating cells during the early rejection stage at a single-cell level and identify potential therapeutic targets. Methods: A heterotopic heart transplant model was established using enhanced green fluorescent protein (eGFP)-expressing mice as recipients of allogeneic or syngeneic grafts. At 3 days post-transplant, eGFP-positive cells infiltrating the grafts were sorted and subjected to single-cell RNA-seq analysis. Potential molecular targets were evaluated by assessing graft survival and functions following administration of various pharmacological inhibitors. Results: A total of 27,053 cells recovered from syngrafts and allografts were classified into 20 clusters based on expression profiles and annotated with a reference dataset. Innate immune cells, including monocytes, macrophages, neutrophils, and dendritic cells, constituted the major infiltrating cell types (>90%) in the grafts. Lymphocytes, fibroblasts, and endothelial cells represented a smaller population. Allografts exhibited significantly increased proportions of monocyte-derived cells involved in antigen processing and presentation, as well as activated lymphocytes, as compared to syngrafts. Differential expression analysis revealed upregulation of interferon activation-related genes in the innate immune cells infiltrating allografts. Pro-inflammatory polarization gene signatures were also enriched in these infiltrating cells of allografts. Gene profiling and intercellular communication analysis identified natural killer cells as the primary source of interferon-γ signaling, activating inflammatory monocytes that displayed strong signals of major histocompatibility complexes and co-stimulatory molecules. The inflammatory response was also associated with promoted T cell proliferation and activation in allografts during the early transplant stages. Notably, caspase-1 exhibited specific upregulation in inflammatory monocytes in response to interferon signaling. The regulon analysis also revealed a significant enrichment of interferon-related motifs within the transcriptional regulatory network of downstream inflammatory genes including caspase-1. Remarkably, pharmacological inhibition of caspase-1 was shown to reduce immune infiltration, prevent acute graft rejection, and improve cardiac contractile function. Conclusion: The single-cell transcriptional profile highlighted the crucial role of caspase-1 in interferon-mediated inflammatory monocytes infiltrating heart transplants, suggesting its potential as a therapeutic target for attenuating rejection.


Subject(s)
Endothelial Cells , Postoperative Complications , Animals , Mice , Caspase 1 , Single-Cell Analysis , Interferons , Graft Rejection
15.
Environ Sci Pollut Res Int ; 29(49): 74500-74511, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35639313

ABSTRACT

Fine particulate matter (PM2.5) is an important risk factor affecting human health. Therefore, a quick method for finding metabolic targets in situ in ambient fine particulate matter is crucial. In this study, the impact of PM2.5 on human lung epithelial cells (A549) was investigated by Raman spectroscopy and mass spectrometry (MS)-based nontargeted metabolomics analysis. Raman detection indicated that exposure to PM2.5 reduced the levels of phenylalanine, tyrosine, and nucleotides. Metabolomics results not only demonstrated a significant decrease of the aforementioned metabolites but also added some important metabolite information that could not be detected by Raman spectroscopy. Our study demonstrated that Raman spectroscopy was an in situ, real-time, and rapid detection method for detecting metabolites, especially suitable for the assignment of phenylalanine/tyrosine and nucleotides, which play important roles in cellular growth. Moreover, the metabolic profiling changes observed upon PM2.5 treatment mainly involved phenylalanine, tyrosine metabolism, purine and pyrimidine metabolism, and energy metabolism, clearly demonstrating that PM2.5 can inhibit the synthesis of protein and DNA/RNA and reduce cellular energy supplies, further influencing cellular proliferation and other activities.


Subject(s)
Air Pollutants , Humans , Mass Spectrometry , Metabolomics , Nucleotides , Particulate Matter , Phenylalanine , Purines , Pyrimidines , RNA , Spectrum Analysis, Raman , Tyrosine
16.
ACS Appl Mater Interfaces ; 14(36): 40834-40840, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36053002

ABSTRACT

The broad application of peroxymonosulfate (PMS)-assisted oxidation by heterogeneous catalysts for contaminant removal suffers from the limitation of low PMS decomposition efficiency and consequent excessive electrolyte residues. In this work, we report that a micrometer-scale superstructured Ni-N-C catalyst Ni-NCNT/CB with a nanotube-array surface layer exhibits ultrahigh m-cresol removal efficiency with low PMS input and possesses ∼17-fold higher catalytic specific activity (reaction rate constant normalized to per Ni-Nx site) compared to the traditional Ni-SAC catalyst. Electron paramagnetic resonance results indicate that 1O2 is the dominant oxygen species, and Ni-NCNT/CB with a space-confined layer exhibits high 1O2 utilization for m-cresol degradation. Electrochemical impedance spectroscopy and a normalized k value of Ni-NCNT/CB confirm the spatial confinement effect on the catalyst surface, which is beneficial for regulating the mass transfer and exerting the high activity of active sites. This study gives a new application for spatial confinement, and the configuration of Ni-NCNT/CB may guide a rational catalyst design for AOP wastewater treatment.

17.
Chemosphere ; 298: 134356, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35306055

ABSTRACT

Catalytic wet peroxide oxidation (CWPO) enhanced by swirl flow (SF-CWPO) was developed for the first time to explore the degradation of m-cresol in 3%iron/activated carbon catalysed Fenton reaction. Under the conditions of catalyst dosage of 0.6 g/L, H2O2 dosage of 1.5 mL/L, pH = 6 and reaction time of 20 min, the degradation rate of m-cresol and total organic carbon in 100 mg/L m-cresol solution reaches 81.5% and 82%, respectively. The reaction speed in the SF-CWPO system with an independently designed cyclone reactor was two times faster than the traditional CWPO systems. In addition, via liquid chromatography-mass spectrometry analysis of the degradation product, the possible degradation pathway for m-cresol was proposed. The proposed SF-CWPO can potentially be an efficient and economical method to treat organic pollutants in wastewaters.


Subject(s)
Peroxides , Water Pollutants, Chemical , Catalysis , Cresols/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Peroxides/chemistry , Water Pollutants, Chemical/analysis
18.
Biomacromolecules ; 12(4): 1370-9, 2011 Apr 11.
Article in English | MEDLINE | ID: mdl-21366351

ABSTRACT

Novel supramolecular copolymer micelles with stimuli-responsive abilities were successfully prepared through the complementary multiple hydrogen bonds of nucleobases and then applied for rapid intracellular release of drugs. First, both adenine-terminated poly(ε-caprolactone) (PCL-A) and uracil-terminated poly(ethylene glycol) (PEG-U) were synthesized. The supramolecular amphiphilic block copolymers (PCL-A:U-PEG) were formed based on multiple hydrogen bonding interactions between PCL-A and PEG-U. The micelles self-assembled from PCL-A:U-PEG were sufficiently stable in water but prone to fast aggregation in acidic condition due to the dynamic and sensitive nature of noncovalent interactions. The low cytotoxicity of supramolecular copolymer micelles was confirmed by MTT assay against NIH/3T3 normal cells. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these supramolecular copolymer micelles. In vitro release studies demonstrated that the release of DOX from micelles was significantly faster at mildly acid pH of 5.0 compared to physiological pH. MTT assay against HeLa cancer cells showed DOX-loaded micelles had high anticancer efficacy. Hence, these supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases are very promising candidates for rapid controlled release of drugs.


Subject(s)
Drug Delivery Systems , Hydrogen Bonding , Micelles , Nucleic Acids/chemistry , Polymers/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/toxicity , Doxorubicin/administration & dosage , Doxorubicin/toxicity , HeLa Cells , Humans , Magnetic Resonance Spectroscopy , Mice , Microscopy, Electron, Transmission , NIH 3T3 Cells , Spectroscopy, Fourier Transform Infrared
19.
Chemosphere ; 275: 130060, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33652286

ABSTRACT

Significant efforts have been made to achieve efficient H2O2 generation via oxygen reduction reaction (ORR). Here, the acetylene black (AB)-based gas diffusion electrodes (GDEs) modified by PTFE were fabricated and applied in a closed autoclave for H2O2 generation for the first time. The surface morphology, BET, XPS, cyclic voltammetry curves and linear scanning voltammetry curves of GDEs were all characterized. Additionally, the H2O2 generation experiments of GDEs and the relationship between H2O2 yield and BET surface area (SBET), double layer capacitance (Cdl) were all investigated. It could be found that the SBET and Cdl of GDEs kept a good linear relationship with H2O2 content, and 2#GDE (AB:PTFE = 1:3) possessed the optimal H2O2 generation capacity. Also, the effect of oxygen pressure and current density on H2O2 production was evaluated detailedly, indicating higher oxygen pressure was beneficial to the H2O2 generation and the preferable current density was 20 mA cm-2 due to the side reactions. And all the H2O2 electro-generation experiments exhibited a higher oxygen utilization efficiency (0.77%-2.93%). Finally, the efficient and synergetic electro-catalytic degradation of isophorone was achieved by self-made PbO2 anode and GDE.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Cyclohexanones , Electrodes , Oxidation-Reduction , Reactive Oxygen Species , Water Pollutants, Chemical/analysis
20.
Langmuir ; 26(11): 8875-81, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20225825

ABSTRACT

A double-hydrophilic multiarm hyperbranched polymer with a hyperbranched poly(amidoamine) (HPAMAM) core and many poly(ethylene glycol) monomethyl ether (MPEG) arms connected by pH-sensitive acylhydrazone bonds (HPAMAM-g-MPEG) was successfully prepared. Benefiting from the cationic dendritic core and PEGylation shell, the double-hydrophilic multiarm hyperbranched polymer was used as a nanoreactor for CdS quantum dots (CdS QDs) synthesis in aqueous solution. The obtained HPAMAM-g-MPEG and CdS/HPAMAM-g-MPEG nanocomposites were carefully characterized by (1)H NMR, (13)C NMR, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis), fluorescence spectroscopy (FL), dynamic light scattering (DLS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and electronic dispersive X-ray spectroscopy (EDS) analysis. Both (1)H NMR and fluorescence spectroscopy investigations confirmed that the acylhydrazone linkage between the dendritic core and linear arms was readily broken under acidic condition (pH <5.5). When MPEG arms departed from the HPAMAM core, the fluorescence intensity of CdS/HPAMAM-g-MPEG nanocomposites greatly increased. Such pH-responsive behavior of CdS/HPAMAM-g-MPEG nanocomposites was utilized as an exploration of a novel fluorescence probe in an acidic lysosome exemplified by COS-7 cells.

SELECTION OF CITATIONS
SEARCH DETAIL