Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(6): 980-994.e15, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35303428

ABSTRACT

The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Clostridioides difficile/genetics , Lipoproteins/genetics
2.
Microb Ecol ; 82(2): 319-333, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33410933

ABSTRACT

To understand the environmental reservoirs of Vibrio cholerae and their public health significance, we surveyed freshwater samples from rivers in two cities (Jiaxing [JX] and Jiande [JD]) in Zhejiang, China. A total of 26 sampling locations were selected, and river water was sampled 456 times from 2015 to 2016 yielding 200 V. cholerae isolates, all of which were non-O1/non-O139. The average isolation rate was 47.3% and 39.1% in JX and JD, respectively. Antibiotic resistance profiles of the V. cholerae isolates were examined with nonsusceptibility to cefazolin (68.70%, 79/115) being most common, followed by ampicillin (47.83%, 55/115) and imipenem (27.83%, 32/115). Forty-two isolates (36.52%, 42/115) were defined as multidrug resistant (MDR). The presence of virulence genes was also determined, and the majority of the isolates were positive for toxR (198/200, 99%) and hlyA (196/200, 98%) with few other virulence genes observed. The population structure of the V. cholerae non-O1/non-O139 sampled was examined using multilocus sequence typing (MLST) with 200 isolates assigned to 128 STs and 6 subpopulations. The non-O1/non-O139 V. cholerae population in JX was more varied than in JD. By clonal complexes (CCs), 31 CCs that contained isolates from this study were shared with other parts of China and/or other countries, suggesting widespread presence of some non-O1/non-O139 clones. Drug resistance profiles differed between subpopulations. The findings suggest that non-O1/non-O139 V. cholerae in the freshwater environment is a potential source of human infections. Routine surveillance of non-O1/non-O139 V. cholerae in freshwater rivers will be of importance to public health.


Subject(s)
Rivers , Vibrio cholerae non-O1 , Drug Resistance, Multiple , Humans , Multilocus Sequence Typing , Vibrio cholerae non-O1/genetics , Virulence/genetics
3.
Appl Microbiol Biotechnol ; 105(11): 4415-4425, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34037843

ABSTRACT

The pathogenesis of gut microbiota in humans can be indicated due to the wide application of techniques, such as 16S rRNA sequencing. Presently, several studies have found a significant difference in fecal flora between normal individuals and patients with gastric cancer. Although clinical research on the feedback mechanism of gastric flora and gut microbiota is lacking, clarifying the relationship between gut microbiota and the characteristics of cancer is significant for the early diagnosis of gastric cancer. This study was conducted to review the results of several studies in the past 5 years and analyze the intestinal bacteria in patients with gastric cancer and compare them with those in patients with esophageal and small intestine cancers. It was found that the gut microbiota in patients with gastric cancer was similar to that in patients with esophageal cancer. However, making an analysis and comparing the gut microbiota in patients with small intestine and gastric cancers was impossible due to the low incidence of small intestinal cancer. Our review summarized the research progress on using the gut microbiota for early screening for gastric cancer, and the results of this study will provide a further direction in this field. KEY POINTS: • We reviewed several relative mechanisms of the gut microbiota related to gastric cancer. • The gut microbiota in gastric, esophageal, and small intestine cancers are significantly different in types and quantity, and we have provided some tips for further research. • A prospective review of sequencing methods and study results on the gut microbiota in gastric, esophageal, and small intestine cancers was described.


Subject(s)
Esophageal Neoplasms , Gastrointestinal Microbiome , Stomach Neoplasms , Humans , Intestine, Small , Prospective Studies , RNA, Ribosomal, 16S/genetics
4.
BMC Infect Dis ; 20(1): 343, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32404060

ABSTRACT

BACKGROUND: Clostridium difficile infection (CDI) has an increasing pediatric prevalence worldwide. However, molecular characteristics of C. difficile in Chinese children with acute gastroenteritis have not been reported. METHODS: A five-year cross-sectional study was conducted in a tertiary children's hospital in Zhejiang. Consecutive stool specimens from outpatient children with acute gastroenteritis were cultured for C. difficile, and isolates then were analyzed for toxin genes, multi-locus sequence type and antimicrobial resistance. Diarrhea-related viruses were detected, and demographic data were collected. RESULTS: A total of 115 CDI cases (14.3%), and 69 co-infected cases with both viruses and toxigenic C. difficile, were found in the 804 stool samples. The 186 C. difficile isolates included 6 of toxin A-positive/toxin B-positive/binary toxin-positive (A+B+CDT+), 139 of A+B+CDT-, 3 of A-B+CDT+, 36 of A-B+CDT- and 2 of A-B-CDT-. Sequence types 26 (17.7%), 35 (11.3%), 39 (12.4%), 54 (16.7%), and 152 (11.3%) were major genotypes with significant differences among different antimicrobial resistances (Fisher's exact test, P < 0.001). The A-B+ isolates had significantly higher resistance, compared to erythromycin, rifampin, moxifloxacin, and gatifloxacin, than that of the A+B+ (χ2 = 7.78 to 29.26, P < 0.01). The positive CDI rate in infants (16.2%) was significantly higher than that of children over 1 year old (10.8%) (χ2 = 4.39, P = 0.036). CONCLUSIONS: CDI has been revealed as a major cause of acute gastroenteritis in children with various genotypes. The role of toxigenic C. difficile and risk factors of CDI should be emphatically considered in subsequent diarrhea surveillance in children from China.


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Diarrhea/epidemiology , Gastroenteritis/epidemiology , RNA Virus Infections/epidemiology , RNA Viruses/genetics , Child, Preschool , China/epidemiology , Clostridium Infections/microbiology , Coinfection , Cross-Sectional Studies , Diarrhea/virology , Drug Resistance, Bacterial , Feces/virology , Female , Gastroenteritis/virology , Genotype , Humans , Infant , Male , Microbial Sensitivity Tests , Outpatients , RNA Virus Infections/virology , Real-Time Polymerase Chain Reaction , Risk Factors , Tertiary Care Centers
5.
J Clin Microbiol ; 56(5)2018 05.
Article in English | MEDLINE | ID: mdl-29467194

ABSTRACT

Clostridium difficile multilocus sequence type 37 (ST37), which mainly corresponds to ribotype 017, has been a dominant genotype circulating in China. In this study, we report the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to analyze and characterize 204 C. difficile clinical isolates, including 49 ST37 and 155 non-ST37 isolates collected in China and other countries. The distributions of two major protein peaks (m/z 3,242 and 3,286) were significantly different between ST37 and non-ST37 prototype strains and clinical isolates. This difference was reproducible when analysis was performed on different colonies in different runs. This finding was repeated and confirmed by both bioMérieux Vitek MS and Bruker Microflex LT systems on isolates recovered from a variety of geographic regions worldwide. The combination of the two peaks was present in 47 of 49 ST37 isolates, resulting in a sensitivity of 95.9%. In contrast, the peak combination was absent in 153 of 155 non-ST37 isolates, resulting in a specificity of 98.7%. Our results suggest that MALDI-TOF MS is a rapid and reliable tool to identify C. difficile genotype ST37. Work is in progress to characterize the two molecules having peaks at m/z 3,242 and 3,286, which appear to be specific to C. difficile genotype ST37.


Subject(s)
Clostridioides difficile/classification , Clostridioides difficile/genetics , Clostridium Infections/microbiology , Molecular Typing/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Bacterial Proteins/analysis , Clostridioides difficile/isolation & purification , Cluster Analysis , Genotype , Humans , Reproducibility of Results , Sensitivity and Specificity
6.
BMC Microbiol ; 18(1): 185, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30424744

ABSTRACT

BACKGROUND: Vibrio parahaemolyticus is as an important food-borne pathogen circulating in China. Since 1996, the core serotype has become O3:K6, which has specific genetic markers. This serotype causes the majority of outbreaks worldwide. Until now, nearly 21 serotypes were considered as serovariants of O3:K6. Among these, O4:K68, O1:K25 and O1:KUT have caused pandemic outbreaks. O4:K8, a serovariant of O3:K6, has become the second most dominant serotype circulating in China after O3:K6. In this study, we report the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze and characterize 146 V. parahaemolyticus isolates belonging to 23 serotypes. RESULTS: Upon mass spectral analysis, isolates belonging to O4:K8 formed a distinct group among the five main pandemic groups (O3:K6, O4:K8, O4:K68, O1:K25 and O1:KUT). Two major protein peaks (m/z 4383 and 4397) were significantly different between serotype O4:K8 and the four other pandemic strains. Both of these peaks were present in 32 out of 36 O4:K8 isolates, but were absent in 105 out of 110 non-O4:K8 isolates. These peaks were also absent in all 74 pandemic serotypes (O3:K6, O4:K68, O1:K25 and O1:KUT). CONCLUSION: Our results highlight the threat of O4:K8 forming a distinct group, which differs significantly from pandemic serotypes on the proteomic level. The use of MALDI-TOF MS has not been reported before in a study of this nature. Mass spectrum peaks at m/z 4383 and 4397 may be specific for O4:K8. However, we cannot conclude that MALDI-TOF MS can be used to serotype V. parahaemolyticus.


Subject(s)
Foodborne Diseases/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods , Vibrio Infections/microbiology , Vibrio parahaemolyticus/chemistry , Vibrio parahaemolyticus/isolation & purification , China/epidemiology , Foodborne Diseases/epidemiology , Humans , Serogroup , Vibrio Infections/epidemiology , Vibrio parahaemolyticus/classification
7.
J Clin Microbiol ; 55(7): 1998-2008, 2017 07.
Article in English | MEDLINE | ID: mdl-28404671

ABSTRACT

Oral antibiotics such as metronidazole, vancomycin and fidaxomicin are therapies of choice for Clostridium difficile infection. Several important mechanisms for C. difficile antibiotic resistance have been described, including the acquisition of antibiotic resistance genes via the transfer of mobile genetic elements, selective pressure in vivo resulting in gene mutations, altered expression of redox-active proteins, iron metabolism, and DNA repair, as well as via biofilm formation. This update summarizes new information published since 2010 on phenotypic and genotypic resistance mechanisms in C. difficile and addresses susceptibility test methods and other strategies to counter antibiotic resistance of C. difficile.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Drug Resistance, Bacterial , Microbial Sensitivity Tests/methods , Clostridioides difficile/genetics , Genes, Bacterial , Humans
8.
J Clin Microbiol ; 55(3): 801-810, 2017 03.
Article in English | MEDLINE | ID: mdl-27974547

ABSTRACT

Few studies on risk factors for and transmission of Clostridium difficile infection (CDI) in China have been reported. A cross-sectional study was conducted for 3 years in eastern China. Consecutive stool specimens from hospitalized patients with diarrhea were cultured for C. difficile. C. difficile isolates from these patients then were analyzed for toxin genes, genotypes, and antimicrobial resistance. A severity score for the CDI in each patient was determined by a blinded review of the medical record, and these scores ranged from 1 to 6. A total of 397 out of 3,953 patients (10.0%) with diarrhea were found to have CDI. Severity of CDI was mild to moderate, and the average (± standard deviation) severity score was 2.61 ± 1.01. C. difficile was isolated from stool specimens in 432 (10.9%) of all the patients who had diarrhea. C. difficile genotypes were determined by multilocus sequence analysis and PCR ribotyping; sequence type 37 (ST37)/ribotype 017 (RT017) (n = 68, 16.5%) was the dominant genotype. Eleven patients (16.2%) with this genotype had a CDI severity score of 5. Overall, three RTs and four STs were predominant; these genotypes were associated with significantly different antimicrobial resistance patterns in comparison to all genotypes (χ2 = 79.56 to 97.76; P < 0.001). Independent risk factors associated with CDI included age greater than 55 years (odds ratio [95% confidence interval], 26.80 [18.76 to 38.29]), previous hospitalization (12.42 [8.85 to 17.43]), previous antimicrobial treatment within 8 weeks (150.56 [73.11 to 310.06]), hospital stay more than 3 days before sampling (2.34 [1.71 to 3.22]), undergoing chemotherapy (3.31 [2.22 to 4.92]), and undergoing abdominal surgery (4.82 [3.54 to 6.55]). CDI is clearly a problem in eastern China and has a prevalence of 10.0% in hospitalized patients. Among risk factors for CDI, the advanced age threshold was younger for Chinese patients than that reported for patients in developed countries.


Subject(s)
Clostridioides difficile/classification , Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Cross Infection/epidemiology , Genotype , Aged , Bacterial Toxins/genetics , China , Clostridioides difficile/isolation & purification , Clostridium Infections/microbiology , Clostridium Infections/pathology , Cross-Sectional Studies , Drug Resistance, Bacterial , Female , Hospitals , Humans , Male , Middle Aged , Molecular Epidemiology , Multilocus Sequence Typing , Ribotyping , Risk Factors
9.
Curr Microbiol ; 70(4): 536-43, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25510171

ABSTRACT

The pathogenic mechanism of Vibrio cholerae manifests as diarrhea and causes life-threatening dehydration. Here, we observe the human intestinal epithelial cells (HIEC) response to Cholera toxin (CT) by a real-time cell analysis (RTCA) platform, and disclose the difference from CT-induced cytotoxicity and others in HIEC. An HIEC cell of 1.0 × 10(5) cells/mL was characterized as the suitable concentration for each well. For experimentation, the assay requires an inoculation of CT dissolved in Dulbecco's phosphate-buffered saline with 0.1 % gelatin for a period of 18-25 h. The dimensionless impedance cell index curve presented characteristic dose- and time-dependent drop responses at the first stage, and the CT-induced cytotoxicity was the most remarkable following exposure for 18-25 h (P = 0.0002). Following the obvious cytotoxic reaction, the CI curve gradually increased over time until the original CI value, indicating that self-recovery occurred. The CT-induced CI curve for HIEC was different from that induced by other toxins, including diphtheria and Clostridium difficile toxin. Collectively, these results suggest that the CT-induced cytotoxicity in HIEC was absolutely different from that induced by C. difficile and other toxins because of the different pathogeneses that were correlated with the specific CI curve generated by the RTCA system. In summary, our data show that the assay described here is a convenient and rapid high-throughput tool for real-time monitoring of host cellular responses to CT on the basis of the characteristic CI curve.


Subject(s)
Cholera Toxin/toxicity , Epithelial Cells/drug effects , Cell Physiological Phenomena/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Time Factors
10.
J Clin Microbiol ; 52(4): 1105-11, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24452160

ABSTRACT

We describe here the use of an immunomagnetic separation enrichment process coupled with a modified real-time cellular analysis (RTCA) system (RTCA version 2) for the detection of C. difficile toxin (CDT) in stool. The limit of CDT detection by RTCA version 2 was 0.12 ng/ml. Among the consecutively collected 401 diarrheal stool specimens, 53 (13.2%) were toxin-producing C. difficile strains by quantitative toxigenic culture (qTC); bacterial loads ranged from 3.00 × 10(1) to 3.69 × 10(6) CFU/ml. The RTCA version 2 method detected CDT in 51 samples, resulting in a sensitivity of 96.2%, a specificity of 99.7%, and positive and negative predictive values of 98.1% and 99.4%, respectively. The positive step time ranged from 1.43 to 35.85 h, with <24 h for 80% of the samples. The CDT concentrations in stool samples determined by RTCA version 2 correlated with toxigenic C. difficile bacterial load (R(2) = 0.554, P = 0.00002) by qTC as well as the threshold cycle (R(2) = 0.343, P = 0.014) by real-time PCR. A statistically significant correlation between the CDT concentrations and the clinical severity of CDI was observed (P = 0.015). The sensitivity of the RTCA version 2 assay for the detection of functional toxins in stool specimens was significantly improved when the immunomagnetic separation enrichment process was incorporated. More than 80% positive results can be obtained within 24 h. The stool specimen CDT concentration derived using the RTCA version 2 assay correlates with clinical severity and may be used as a marker for monitoring the status of CDI.


Subject(s)
Bacterial Toxins/analysis , Clostridium Infections/diagnosis , Feces/chemistry , Immunomagnetic Separation/methods , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Clostridioides difficile/isolation & purification , Clostridium Infections/microbiology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Sensitivity and Specificity , Time Factors , Young Adult
11.
Bioorg Med Chem Lett ; 24(16): 3956-60, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25008453

ABSTRACT

A non-fluorescent quencher based on thiazole orange was incorporated into oligonucleotides. Fluorimetry and fluorogenic real-time polymerase chain reaction experiments demonstrated that the quencher is effective for fluorescein amidite dyes. The thiazole orange quencher also increased the melting temperature of DNA duplexes, which may facilitate the design of shorter and more discriminatory probes. The effectiveness of the quencher in TaqMan probes was also demonstrated.


Subject(s)
Benzothiazoles/chemistry , DNA Probes/chemistry , DNA/chemistry , Fluorescence Resonance Energy Transfer , Quinolines/chemistry , DNA Probes/genetics , Fluorescent Dyes , Real-Time Polymerase Chain Reaction
12.
Front Microbiol ; 15: 1348892, 2024.
Article in English | MEDLINE | ID: mdl-38322317

ABSTRACT

Objectives: It is important to accurately discriminate between clinical Clostridioides difficile infection (CDI) and colonization (CDC) for effective antimicrobial treatment. Methods: In this study, 37 stool samples were collected from 17 CDC and 20 CDI cases, and each sample were tested in parallel through the real-time cell analysis (RTCA) system, real-time PCR assay (PCR), and enzyme-linked immunosorbent assay (ELISA). Results: RTCA-measured functional and toxical C. difficile toxin B (TcdB) concentrations in the CDI group (302.58 ± 119.15 ng/mL) were significantly higher than those in the CDC group (18.15 ± 11.81 ng/mL) (p = 0.0008). Conversely, ELISA results revealed no significant disparities in TcdB concentrations between the CDC (26.21 ± 3.57 ng/mL) and the CDI group (17.07 ± 3.10 ng/mL) (p = 0.064). PCR results indicated no significant differences in tcdB gene copies between the CDC (774.54 ± 357.89 copies/µL) and the CDI group (4,667.69 ± 3,069.87 copies/µL) (p = 0.407). Additionally, the functional and toxical TcdB concentrations secreted from C. difficile isolates were measured by the RTCA. The results from the CDC (490.00 ± 133.29 ng/mL) and the CDI group (439.82 ± 114.66 ng/mL) showed no significant difference (p = 0.448). Notably, RTCA-measured functional and toxical TcdB concentration was significantly decreased when mixed with pooled CDC samples supernatant (p = 0.030). Conclusion: This study explored the novel application of the RTCA assay in effectively discerning clinical CDI from CDC cases.

13.
RSC Adv ; 14(2): 954-962, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174253

ABSTRACT

Flame-retardant materials that are mechanically robust, low cost and non-toxic from green and renewable resources are highly demanded in many fields. In this work, aerogels of alginate extracted from seaweeds were fabricated and reinforced with nanoclay. The nanoclay particles increase the molecular ordering (crystallinity) of the aerogels through physical interactions with alginate molecules. They also served as cross-linkers and flame-retardant additives to improve the mechanical strength, elasticity, thermal stability and flame-retarding properties of the aerogels. Under exposure to a butane flame (750 °C), the aerogels maintained their structural integrity and did not produce drips. An optimal loading of nanoclay which led to the best flame retardancy (non-flammable) of the aerogel was determined. The results of this work demonstrate that alginate-nanoclay composite aerogels can be promisingly used as flame-retardant thermal insulation materials.

14.
Front Microbiol ; 15: 1368194, 2024.
Article in English | MEDLINE | ID: mdl-38638911

ABSTRACT

Introduction: Clostridioides difficile infection (CDI), as well as its etiology and pathogenesis, have been extensively investigated. However, the absence of suitable CDI animal models that reflect CDI symptoms and the associated gut microbiome changes in humans has limited research progress in this field. Thus, we aimed to investigate whether Mongolian gerbils, which present a range of human pathological conditions, can been used in studies on CDI. Methods: In this study, we infected Mongolian gerbils and two existing CDI model animals, mice and hamsters, with the hypervirulent ribotype 027 C. difficile strain, and comparatively analyzed changes in their gut microbiome composition via 16S rRNA gene sequencing. Methods: In this study, we infected Mongolian gerbils and two existing CDI model animals, mice and hamsters, with the hypervirulent ribotype 027 C. difficile strain, and comparatively analyzed changes in their gut microbiome composition via 16S rRNA gene sequencing. Results: The results obtained showed that C. difficile colonized the gastrointestinal tracts of the three rodents, and after the C. difficile challenge, C57BL/6J mice did not manifest CDI symptoms and their intestines showed no significant pathological changes. However, the hamsters showed explosive intestinal bleeding and inflammation and the Mongolian gerbils presented diarrhea as well as increased infiltration of inflammatory cells, mucus secretion, and epithelial cell shedding in their intestinal tissue. Further, intestinal microbiome analysis revealed significant differences with respect to intestinal flora abundance and diversity. Specifically, after C. difficile challenge, the Firmicutes/Bacteroidetes ratio decreased for C57BL/6J mice, but increased significantly for Mongolian gerbils and hamsters. Furthermore, the abundance of Proteobacteria increased in all three models, especially in hamsters, while that of Verrucomicrobia only increased significantly in C57BL/6J mice and Mongolian gerbils. Our results also indicated that differences in the relative abundances of Lactobacillaceae and Akkermansia were primarily responsible for the observed differences in response to C. difficile challenge. Conclusion: Based on the observed responses to C. difficile challenge, we concluded for the first time that the Mongolian gerbil could be used as an animal model for CDI. Additionally, the taxa identified in this study may be used as biomarkers for further studies on CDI and to improve understanding regarding changes in gut microbiome in CDI-related diseases.

15.
J Clin Microbiol ; 51(4): 1263-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23345295

ABSTRACT

A panel of seven variable-number tandem-repeat (VNTR) markers was selected for Acinetobacter baumannii typing analysis (MLVA-7). Compared with pulsed-field gel electrophoresis (PFGE), MLVA-7 provided greater discrimination. We modified the criteria for MLVA complex assignments proposed previously, and a remarkable congruence between MLVA-7- and PFGE-based strain clustering was observed.


Subject(s)
Acinetobacter baumannii/classification , Acinetobacter baumannii/genetics , Electrophoresis, Gel, Pulsed-Field , Minisatellite Repeats , Molecular Typing/methods , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , China , Cluster Analysis , Humans , Molecular Epidemiology/methods
16.
J Clin Microbiol ; 51(12): 3968-74, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24048535

ABSTRACT

We report here the quantitative detection of Vibrio cholerae toxin (CT) in isolates and stool specimens by dynamic monitoring of the full course of CT-mediated cytotoxicity in a real-time cell analysis (RTCA) system. Four cell lines, including Y-1 mouse adrenal tumor cells, Chinese hamster ovary (CHO) cells, small intestine epithelial (FHs74Int) cells, and mouse adrenal gland (PC12-Adh) cells, were evaluated for their suitability for CT-induced cytotoxicity testing. Among them, the Y-1 line was demonstrated to be the most sensitive for CT-mediated cytotoxicity, with limits of detection of 7.0 pg/ml for purified CT and 0.11 ng/ml for spiked CT in pooled negative stool specimens. No CT-mediated cytotoxicity was observed for nontoxigenic V. cholerae, non-V. cholerae species, or non-V. cholerae enterotoxins. The CT-RTCA assay was further validated with 100 stool specimens consecutively collected from patients with diarrhea and 200 V. cholerae isolates recovered from patients and the environment, in comparison to a reference using three detection methods. The CT-RTCA assay had sensitivities and specificities of 97.5% and 100.0%, respectively, for V. cholerae isolates and 90.0% and 97.2% for stool specimens. For stool specimens spiked with CT concentrations ranging from 3.5 pg/ml to 1.8 ng/ml, the inoculation-to-detection time was 1.12 ± 0.38 h, and the values were inversely correlated with CT concentrations (ρ = -1; P = 0.01). The results indicate that the CT-RTCA assay with the Y-1 cell line provides a rapid and sensitive tool for the quantitative detection of CT activities in clinical specimens.


Subject(s)
Cholera Toxin/analysis , Cholera Toxin/toxicity , Cholera/diagnosis , Vibrio cholerae/metabolism , Animals , Cell Line , Cell Survival/drug effects , Cricetinae , Cricetulus , Diarrhea/diagnosis , Humans , Mice , Sensitivity and Specificity
17.
BMC Microbiol ; 13: 52, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23497008

ABSTRACT

BACKGROUND: Cholera is still a significant public health issue in developing countries. The aetiological agent is Vibrio cholerae and only two serogroups, O1 and O139, are known to cause pandemic or epidemic cholera. In contrast, non-O1/non-O139 V. cholerae has only been reported to cause sporadic cholera-like illness and localised outbreaks. The aim of this study was to determine the genetic diversity of non-O1/non-O139 V. cholerae isolates from hospitalised diarrhoeal patients in Zhejiang Province, China. RESULTS: In an active surveillance of enteric pathogens in hospitalised diarrhoeal patients, nine non-O1/non-O139 V. cholerae isolates were identified from 746 diarrhoeal stool samples at a rate of 1.2%. These isolates and an additional 31 isolates from sporadic cases and three outbreaks were analysed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). PFGE divided the isolates into 25 PFGE types while MLST divided them into 15 sequence types (STs). A single ST, ST80, was predominant which persisted over several years in different cities and caused two outbreaks in recent years. Antibiotic resistance varied with the majority of the isolates resistant to sulphamethoxazole/trimethoprim and nearly all isolates either resistant or intermediate to erythromycin and rifampicin. None of the isolates carried the cholera toxin genes or toxin co-regulated pilus genes but the majority carried a type III secretion system as the key virulence factor. CONCLUSIONS: Non-O1/non-O139 V. cholerae is an important contributor to diarrhoeal infections in China. Resistance to commonly used antibiotics limits treatment options. Continuous surveillance of non-O1/non-O139 V. cholerae is important for control and prevention of diarrhoeal infections.


Subject(s)
Cholera/microbiology , Genetic Variation , Vibrio cholerae/classification , Vibrio cholerae/isolation & purification , China , Cholera Toxin/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Drug Resistance, Bacterial , Electrophoresis, Gel, Pulsed-Field , Hospitals , Humans , Molecular Sequence Data , Multilocus Sequence Typing , Vibrio cholerae/genetics
18.
Front Chem ; 11: 1249293, 2023.
Article in English | MEDLINE | ID: mdl-37780982

ABSTRACT

Niclosamide (NIC) is a multifunctional drug that regulates various signaling pathways and biological processes. It is widely used for the treatment of cancer, viral infections, and metabolic disorders. However, its low water solubility limits its efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) and hyaluronic acid (HA), which exhibit good biocompatibility, biodegradability, and non-immunogenicity, were conjugated with niclosamide to prepare PLGA-HA-niclosamide polymeric nanoparticles (NIC@PLGA-HA) using microfluidic technology. The obtained microspheres had a uniform size distribution, with an average mean size of 442.0 ± 18.8 nm and zeta potential of -25.4 ± 0.41 mV, indicating their stable dispersion in water. The drug-loading efficiency was 8.70%. The drug-loaded microspheres showed sustained release behavior at pH 7.4 and 5.0, but not at pH 2.0, and the drug release kinetics were described by a quasi-first-order kinetic equation. The effect of the drug-loaded microspheres on the proliferation of Caco-2 cells was detected using the MTT assay. Hydrophilic HA-modified NIC@PLGA-HA microspheres prepared via microfluidic technology increased the cellular uptake by Caco-2 cells. Compared to the same concentration of NIC, the NIC@PLGA-HA microspheres demonstrated a stronger inhibitory effect on Caco-2 cells owing to the combined effect of PLGA, HA, and NIC. Therefore, the pH-responsive NIC@PLGA-HA microspheres synthesized using microfluid technology increased the solubility of NIC and improved its biological activity, thus contributing to the demand for intestinal drug carriers.

19.
Front Cell Infect Microbiol ; 13: 1254379, 2023.
Article in English | MEDLINE | ID: mdl-37692161

ABSTRACT

Vibrio vulnificus, a foodborne pathogen, has a high mortality rate. Despite its relevance to public health, the identification of virulence genes associated with the pathogenicity of currently known clinical isolates of V. vulnificus is incomplete and its synergistic pathogenesis remains unclear. Here, we integrate whole genome sequencing (WGS), genome-wide association studies (GWAS), and genome-wide epistasis studies (GWES), along with phenotype characterization to investigate the pathogenesis and survival strategies of V. vulnificus. GWAS and GWES identified a total of six genes (purH, gmr, yiaV, dsbD, ramA, and wbpA) associated with the pathogenicity of clinical isolates related to nucleotide/amino acid transport and metabolism, cell membrane biogenesis, signal transduction mechanisms, and protein turnover. Of these, five were newly discovered potential specific virulence genes of V. vulnificus in this study. Furthermore, GWES combined with phenotype experiments indicated that V. vulnificus isolates were clustered into two ecological groups (EGs) that shared distinct biotic and abiotic factors, and ecological strategies. Our study reveals pathogenic mechanisms and their evolution in V. vulnificus to provide a solid foundation for designing new vaccines and therapeutic targets.


Subject(s)
Metagenomics , Vibrio vulnificus , Vibrio vulnificus/genetics , Genome-Wide Association Study , Amino Acids , Biological Transport
20.
Front Bioeng Biotechnol ; 10: 895236, 2022.
Article in English | MEDLINE | ID: mdl-35662850

ABSTRACT

Ultrafast, portable, and inexpensive molecular diagnostic platforms are critical for clinical diagnosis and on-site detection. There are currently no available real-time polymerase chain reaction (PCR) devices able to meet the demands of point-of-care testing, as the heating and cooling processes cannot be avoided. In this study, the dual temperature modules were first designed to process microfluidic chips automatically circulating between them. Thus, a novel ultrafast molecular diagnostic real-time PCR device (approximately 18 and 23 min for DNA and RNA detection, respectively) with two channels (FAM and Cy5) for the detection of 12 targets was developed. The device contained three core functional components, including temperature control, optics, and motion, which were integrated into a portable compact box. The temperature modules accurately control temperature in rapid thermal cycles with less than ±0.1 °C, ±1 °C and ±0.5 °C for the temperature fluctuation, uniformity, and error of indication, respectively. The average coefficient of variation (CV) of the fluorescence intensity (FI) for all 12 wells was 2.3% for FAM and 2.7% for Cy5. There was a good linear relationship between the concentrations of fluorescent dye and the FIs of FAM and Cy5(R 2 = 0.9990 and 0.9937), and the average CVs of the Ct values calculated by the embedded software were 1.4% for FAM and Cy5, respectively. The 100 double-blind mocked sputum and 249 clinical stool samples were analyzed by the ultrafast real-time PCR device in comparison with the DAAN Gene SARS-CoV-2 kit run on the ABI 7500 instrument and Xpert C. difficile/Epi, respectively. Among the 249 stool samples, the ultrafast real-time PCR device detected toxigenic C. difficile in 54 samples (54/249, 21.7%) with a specificity and positive predictive values of 99.0 and 96.3%, which were higher than the Xpert C. difficile/Epi values of 94.4 and 88.1% (p > 0.05). The ultrafast real-time PCR device detected 15 SARS-CoV-2 positive samples, which has a 100% concordance with that obtained by the DAAN Gene SARS-CoV-2 kit. This study demonstrated that the ultrafast real-time PCR device integrated with microfluidic chips and dual temperature modules is an ultrafast, reliable, easy-to-use, and cost-effective molecular diagnostic platform for clinical diagnosis and on-site testing, especially in resource-limited settings.

SELECTION OF CITATIONS
SEARCH DETAIL