Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cell ; 174(6): 1477-1491.e19, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30146158

ABSTRACT

Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.


Subject(s)
Apoptosis , Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Adult , Aged , Aging , Animals , Apoptosis/drug effects , Axons/metabolism , Behavior, Animal , Brain/cytology , Brain/metabolism , Cells, Cultured , Humans , I-kappa B Kinase/metabolism , Mice , Mice, Knockout , Microglia/cytology , Microglia/drug effects , Microglia/metabolism , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Spinal Cord/metabolism , Staurosporine/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
2.
Immunity ; 56(7): 1485-1501.e7, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37315560

ABSTRACT

The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1ß. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1ß and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.


Subject(s)
Osteomyelitis , Receptors, Interleukin-1 , Mice , Animals , Receptors, Interleukin-1/genetics , Osteomyelitis/drug therapy , Osteomyelitis/genetics , Osteomyelitis/pathology , Inflammation/genetics , Inflammation/pathology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/pharmacology , Signal Transduction , Mutation
3.
Proc Natl Acad Sci U S A ; 119(44): e2214227119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279464

ABSTRACT

LUBAC-mediated linear ubiquitination plays a pivotal role in regulation of cell death and inflammatory pathways. Genetic deficiency in LUBAC components leads to severe immune dysfunction or embryonic lethality. LUBAC has been extensively studied for its role in mediating TNF signaling. However, Tnfr1 knockout is not able to fully rescue the embryonic lethality of LUBAC deficiency, suggesting that LUBAC may modify additional key cellular substrates in promoting cell survival. GPx4 is an important selenoprotein involved in regulating cellular redox homeostasis in defense against lipid peroxidation-mediated cell death known as ferroptosis. Here we demonstrate that LUBAC deficiency sensitizes to ferroptosis by promoting GPx4 degradation and downstream lipid peroxidation. LUBAC binds and stabilizes GPx4 by modulating its linear ubiquitination both in normal condition and under oxidative stress. Our findings identify GPx4 as a key substrate of LUBAC and a previously unrecognized role of LUBAC-mediated linear ubiquitination in regulating cellular redox status and cell death.


Subject(s)
Receptors, Tumor Necrosis Factor, Type I , Ubiquitin , Receptors, Tumor Necrosis Factor, Type I/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , NF-kappa B/metabolism , Ubiquitination
4.
Clin Immunol ; 255: 109731, 2023 10.
Article in English | MEDLINE | ID: mdl-37567492

ABSTRACT

NLRC4 gain-of-function variants are known to cause various autoinflammatory phenotypes, including familial cold autoinflammatory syndrome (FCAS4) and NLRC4 macrophage activation syndrome (NLRC4-MAS). However, to date, no study has linked NLRC4 gain-of-function variants to systemic lupus erythematosus (SLE). In this study, we identified a novel NLRC4 W655S variant in an SLE patient and her son, who had neonatal lupus complicated with macrophage activation syndrome. Our in vitro experiments demonstrated that the W655S NLRC4 increased ASC speck formation and mature IL-1ß secretion compared to the wild-type NLRC4. In addition, the patient had elevated levels of IL-1ß and IL-18 in both serum and PBMCs. RNA sequencing showed that NF-κB and interferon signaling pathways were significantly activated in the patient compared to healthy controls. Furthermore, gene set enrichment analysis revealed upregulation of NLRC4-related pathways in patient PBMCs. In conclusion, our study identified the NLRC4 W655S variant in a patient with SLE. This is the first report linking inflammasomopathy to monogenic SLE. Our findings suggest that inflammasome activation may be a critical driver in the pathogenicity of lupus, and autoinflammatory pathways may play important roles in the development of the disease.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Inflammasomes , Lupus Erythematosus, Systemic , Macrophage Activation Syndrome , Female , Humans , Infant, Newborn , Calcium-Binding Proteins/genetics , CARD Signaling Adaptor Proteins/genetics , Gain of Function Mutation , Inflammasomes/genetics , Inflammasomes/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Macrophage Activation Syndrome/genetics
5.
J Clin Immunol ; 43(4): 835-845, 2023 05.
Article in English | MEDLINE | ID: mdl-36807221

ABSTRACT

PURPOSE: Deficiency of adenosine deaminase 2 (DADA2), an autosomal recessive autoinflammatory disorder caused by biallelic loss-of-function variants in adenosine deaminase 2 (ADA2), has not been systemically investigated in Chinese population yet. We aim to further characterize DADA2 cases in China. METHODS: A retrospective analysis of patients with DADA2 identified through whole exome sequencing (WES) at seventeen rheumatology centers across China was conducted. Clinical characteristics, laboratory findings, genotype, and treatment response were analyzed. RESULTS: Thirty patients with DADA2 were enrolled between January 2015 and December 2021. Adenosine deaminase 2 enzymatic activity was low in all tested cases to confirm pathogenicity. Median age of disease presentation was 4.3 years and the median age at diagnosis was 7.8 years. All but one patient presented during childhood and two subjects died from complications of their disease. The patients most commonly presented with systemic inflammation (92.9%), vasculitis (86.7%), and hypogammaglobinemia (73.3%) while one patient presented with bone marrow failure (BMF) with variable cytopenia. Twenty-three (76.7%) patients were treated with TNF inhibitors (TNFi), while two (6.7%) underwent hematopoietic stem cell transplantation (HSCT). They all achieved clinical remission. A total of thirty-nine ADA2 causative variants were identified, six of which were novel. CONCLUSION: To establish early diagnosis and improve clinical outcomes, genetic screening and/or testing of ADA2 enzymatic activity should be performed in patients with suspected clinical features. TNFi is considered as first line treatment for those with vascular phenotypes. HSCT may be beneficial for those with hematological disease or in those who are refractory to TNFi.


Subject(s)
Adenosine Deaminase , Intercellular Signaling Peptides and Proteins , Humans , Adenosine Deaminase/genetics , Intercellular Signaling Peptides and Proteins/genetics , Cohort Studies , Retrospective Studies , Mutation
6.
Genes Dev ; 29(2): 184-96, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25593308

ABSTRACT

Vacuolar protein-sorting 34 (Vps34), the catalytic subunit in the class III PtdIns3 (phosphatidylinositol 3) kinase complexes, mediates the production of PtdIns3P, a key intracellular lipid involved in regulating autophagy and receptor degradation. However, the signal transduction pathways by which extracellular signals regulate Vps34 complexes and the downstream cellular mechanisms are not well understood. Here we show that DNA damage-activated mitotic arrest and CDK activation lead to the phosphorylation of Vps34, which provides a signal to promote its ubiquitination and proteasomal degradation mediated by FBXL20 (an F-box protein) and the associated Skp1 (S-phase kinase-associated protein-1)-Cullin1 complex, leading to inhibition of autophagy and receptor endocytosis. Furthermore, we show that the expression of FBXL20 is regulated by p53-dependent transcription. Our study provides a molecular pathway by which DNA damage regulates Vps34 complexes and its downstream mechanisms, including autophagy and receptor endocytosis, through SCF (Skp1-Cul1-F-box)-mediated ubiquitination and degradation. Since the expression of FBXL20 is regulated by p53-dependent transcription, the control of Vps34 ubiquitination and proteasomal degradation by FBXL20 and the associated SCF complex expression provides a novel checkpoint for p53 to regulate autophagy and receptor degradation in DNA damage response.


Subject(s)
Autophagy/genetics , Cell Cycle Checkpoints/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , F-Box Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Class III Phosphatidylinositol 3-Kinases/genetics , DNA Damage/physiology , Endocytosis/physiology , HeLa Cells , Humans , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , S-Phase Kinase-Associated Proteins/metabolism , Signal Transduction , Ubiquitination
7.
Ann Rheum Dis ; 81(8): 1173-1178, 2022 08.
Article in English | MEDLINE | ID: mdl-35428651

ABSTRACT

OBJECTIVES: We aim to investigate the genetic basis of a case of late-onset autoinflammatory disease characterised by arthritis, recurrent fever and skin rashes. METHODS: We performed whole-exome/genome sequencing and digital droplet PCR (ddPCR) to identify the pathogenic somatic mutation. We used single-cell RNA sequencing (scRNA-seq), intracellular cytokine staining, quantitative PCR, immunohistochemistry and western blotting to define inflammatory signatures and to explore the pathogenic mechanism. RESULTS: We identified a somatic mutation in NLRC4 (p.His443Gln) with the highest mosaicism ratio in the patient's monocytes (5.69%). The somatic mutation resulted in constitutive NLRC4 activation, spontaneous apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) aggregation, caspase-1 hyperactivation and increased production of interleukin (IL)-1ß and IL-18. Moreover, we demonstrated effective suppression of inflammatory cytokine production by targeting gasdermin D, an approach that could be considered as a novel treatment strategy for patients with NLRC4-associated autoinflammatory syndrome. CONCLUSIONS: We reported a case of a late-onset autoinflammatory disease caused by a somatic NLRC4 mutation in a small subset of leucocytes. We systemically analysed this condition at a single-cell transcriptomic level and revealed specific enhancement of inflammatory response in myeloid cells.


Subject(s)
CARD Signaling Adaptor Proteins , Hereditary Autoinflammatory Diseases , CARD Signaling Adaptor Proteins/genetics , Calcium-Binding Proteins/genetics , Cytokines/metabolism , Hereditary Autoinflammatory Diseases/genetics , Humans , Inflammasomes/metabolism , Mutation , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
8.
Proc Natl Acad Sci U S A ; 115(9): E2001-E2009, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29440439

ABSTRACT

RIPK1 is a critical mediator of cell death and inflammation downstream of TNFR1 upon stimulation by TNFα, a potent proinflammatory cytokine involved in a multitude of human inflammatory and degenerative diseases. RIPK1 contains an N-terminal kinase domain, an intermediate domain, and a C-terminal death domain (DD). The kinase activity of RIPK1 promotes cell death and inflammation. Here, we investigated the involvement of RIPK1-DD in the regulation of RIPK1 kinase activity. We show that a charge-conserved mutation of a lysine located on the surface of DD (K599R in human RIPK1 or K584R in murine RIPK1) blocks RIPK1 activation in necroptosis and RIPK1-dependent apoptosis and the formation of complex II. Ripk1K584R/K584R knockin mutant cells are resistant to RIPK1 kinase-dependent apoptosis and necroptosis. The resistance of K584R cells, however, can be overcome by forced dimerization of RIPK1. Finally, we show that the K584R RIPK1 knockin mutation protects mice against TNFα-induced systematic inflammatory response syndrome. Our study demonstrates the role of RIPK1-DD in mediating RIPK1 dimerization and activation of its kinase activity during necroptosis and RIPK1-dependent apoptosis.


Subject(s)
Apoptosis , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Tumor Necrosis Factor-alpha/chemistry , Amino Acid Motifs , Animals , Cell Survival , Enzyme Activation , Exons , Genetic Complementation Test , HEK293 Cells , Humans , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mutation , Necrosis/genetics , Phosphorylation , Protein Binding , Protein Domains , Protein Multimerization , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
9.
J Integr Plant Biol ; 58(6): 549-63, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26472270

ABSTRACT

Plants have evolved a large number of transcription factors (TF), which are enriched among duplicate genes, highlighting their roles in complex regulatory networks. The APETALA2/EREBP-like genes constitute a large plant TF family and participate in development and stress responses. To probe the conservation and divergence of AP2/EREBP genes, we analyzed the duplication patterns of this family in Brassicaceae and identified interacting proteins of representative Arabidopsis AP2/EREBP proteins. We found that many AP2/EREBP duplicates generated early in Brassicaceae history were quickly lost, but many others were retained in all tested Brassicaceae species, suggesting early functional divergence followed by persistent conservation. In addition, the sequences of the AP2 domain and exon numbers were highly conserved in rosids. Furthermore, we used 16 A. thaliana AP2/EREBP proteins as baits in yeast screens and identified 1,970 potential AP2/EREBP-interacting proteins, with a small subset of interactions verified in planta. Many AP2 genes also exhibit reduced expression in an anther-defective mutant, providing a possible link to developmental regulation. The putative AP2-interacting proteins participate in many functions in development and stress responses, including photomorphogenesis, flower development, pathogenesis, drought and cold responses, abscisic acid and auxin signaling. Our results present the AP2/EREBP evolution patterns in Brassicaceae, and support a proposed interaction network of AP2/EREBP proteins and their putative interacting proteins for further study.


Subject(s)
Brassicaceae/metabolism , Environment , Plant Proteins/metabolism , Brassicaceae/classification , Brassicaceae/genetics , Evolution, Molecular , Gene Duplication , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Plant Proteins/genetics , Protein Binding
10.
JCI Insight ; 8(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37676738

ABSTRACT

Pyrin, a protein encoded by the MEFV gene, plays a vital role in innate immunity by sensing modifications in Rho GTPase and assembling the pyrin inflammasome, which in turn activates downstream immune responses. We identified a novel and de novo MEFV p.E583A dominant variant in 3 patients from the same family; the variant was distinct from the previously reported S242 and E244 sites. These patients exhibited a phenotype that diverged from those resulting from classical MEFV gene mutations, characterized by the absence of recurrent fever but the presence of recurrent chest and abdominal pain. Colchicine effectively controlled the phenotype, and the mutation was found to induce pyrin inflammasome assembly and activation in patients' peripheral blood mononuclear cells (PBMCs) and cell lines. Mechanistically, truncation experiments revealed that the E583A variant affected the autoinhibitory structure of pyrin. Our study offers insights into the mechanisms underlying pyrin inflammasome activation.


Subject(s)
Inflammasomes , Leukocytes, Mononuclear , Humans , Pyrin/genetics , Pyrin/metabolism , Inflammasomes/metabolism , Leukocytes, Mononuclear/metabolism , Mutation , Colchicine
11.
Front Immunol ; 13: 926087, 2022.
Article in English | MEDLINE | ID: mdl-36203570

ABSTRACT

PSTPIP1 (proline-serine-threonine phosphatase-interactive protein 1)-associated myeloid-related proteinemia inflammatory (PAMI) syndrome is a rare autoinflammatory disease caused by heterozygous gain-of-function mutation in PSTPIP1. As one of the PSTPIP1-associated inflammatory diseases (PAIDs), neutropenia is a distinct manifestation to separate PAMI syndrome from other PAIDs. This study aimed to investigate the potential role of neutrophils and inflammatory signatures in the pathogenesis of PAMI. PAMI neutrophils displayed markedly increased production of interleukin-1ß (IL-1ß) and IL-18 by enzyme linked immunosorbent assay (ELISA) assay and intracellular cytokine staining. ASC speck formation and lactic dehydrogenase (LDH) release are also increased in patient neutrophils suggesting elevated pyrin inflammasome activation followed by upregulated cell death in PAMI neutrophils. RNA sequencing result showed strong inflammatory signals in both nuclear-factor kappa B (NF-κB) pathway and interferon (IFN) pathway in patient neutrophils. This study highlighted that elevated proinflammatory cytokines IL-1ß and IL-18, increased pyrin inflammasome activation, and upregulation of NF-κB and IFN signaling pathways in neutrophils play important roles in pathogenicity of PAMI syndrome.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Inflammasomes , Neutrophils , Autoimmune Diseases , Cytokines/metabolism , Humans , Inflammasomes/metabolism , Interferons , Interleukin-18 , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Neutrophils/metabolism , Oxidoreductases , Phosphoprotein Phosphatases , Proline , Pyrin , Syndrome
12.
Front Immunol ; 12: 676946, 2021.
Article in English | MEDLINE | ID: mdl-34163478

ABSTRACT

RIPK1 (receptor-interacting serine/threonine-protein kinase 1) is a key molecule for mediating apoptosis, necroptosis, and inflammatory pathways downstream of death receptors (DRs) and pattern recognition receptors (PRRs). RIPK1 functions are regulated by multiple post-translational modifications (PTMs), including ubiquitination, phosphorylation, and the caspase-8-mediated cleavage. Dysregulation of these modifications leads to an immune deficiency or a hyperinflammatory disease in humans. Over the last decades, numerous studies on the RIPK1 function in model organisms have provided insights into the molecular mechanisms of RIPK1 role in the maintenance of immune homeostasis. However, the physiological role of RIPK1 in the regulation of cell survival and cell death signaling in humans remained elusive. Recently, RIPK1 loss-of-function (LoF) mutations and cleavage-deficient mutations have been identified in humans. This review discusses the molecular pathogenesis of RIPK1-deficiency and cleavage-resistant RIPK1 induced autoinflammatory (CRIA) disorders and summarizes the clinical manifestations of respective diseases to help with the identification of new patients.


Subject(s)
Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/immunology , Immunity, Innate , Loss of Function Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Animals , Apoptosis/immunology , Child, Preschool , Disease Models, Animal , Female , Humans , Infant , Infant, Newborn , Male , Mice , Necroptosis/immunology
13.
Cell Discov ; 7(1): 41, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34075030

ABSTRACT

RIPK1, a death domain-containing kinase, has been recognized as an important therapeutic target for inhibiting apoptosis, necroptosis, and inflammation under pathological conditions. RIPK1 kinase inhibitors have been advanced into clinical studies for the treatment of various human diseases. One of the current bottlenecks in developing RIPK1 inhibitors is to discover new approaches to inhibit this kinase as only limited chemotypes have been developed. Here we describe Necrostatin-34 (Nec-34), a small molecule that inhibits RIPK1 kinase with a mechanism distinct from known RIPK1 inhibitors such as Nec-1s. Mechanistic studies suggest that Nec-34 stabilizes RIPK1 kinase in an inactive conformation by occupying a distinct binding pocket in the kinase domain. Furthermore, we show that Nec-34 series of compounds can synergize with Nec-1s to inhibit RIPK1 in vitro and in vivo. Thus, Nec-34 defines a new strategy to target RIPK1 kinase and provides a potential option of combinatorial therapy for RIPK1-mediated diseases.

14.
Cell Res ; 31(12): 1230-1243, 2021 12.
Article in English | MEDLINE | ID: mdl-34663909

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the ongoing global pandemic that poses substantial challenges to public health worldwide. A subset of COVID-19 patients experience systemic inflammatory response, known as cytokine storm, which may lead to death. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important mediator of inflammation and cell death. Here, we examined the interaction of RIPK1-mediated innate immunity with SARS-CoV-2 infection. We found evidence of RIPK1 activation in human COVID-19 lung pathological samples, and cultured human lung organoids and ACE2 transgenic mice infected by SARS-CoV-2. Inhibition of RIPK1 using multiple small-molecule inhibitors reduced the viral load of SARS-CoV-2 in human lung organoids. Furthermore, therapeutic dosing of the RIPK1 inhibitor Nec-1s reduced mortality and lung viral load, and blocked the CNS manifestation of SARS-CoV-2 in ACE2 transgenic mice. Mechanistically, we found that the RNA-dependent RNA polymerase of SARS-CoV-2, NSP12, a highly conserved central component of coronaviral replication and transcription machinery, promoted the activation of RIPK1. Furthermore, NSP12 323L variant, encoded by the SARS-CoV-2 C14408T variant first detected in Lombardy, Italy, that carries a Pro323Leu amino acid substitution in NSP12, showed increased ability to activate RIPK1. Inhibition of RIPK1 downregulated the transcriptional induction of proinflammatory cytokines and host factors including ACE2 and EGFR that promote viral entry into cells. Our results suggest that SARS-CoV-2 may have an unexpected and unusual ability to hijack the RIPK1-mediated host defense response to promote its own propagation and that inhibition of RIPK1 may provide a therapeutic option for the treatment of COVID-19.


Subject(s)
COVID-19/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/mortality , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/genetics , Cytokines/metabolism , Down-Regulation/drug effects , ErbB Receptors/metabolism , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Survival Rate , Transcriptome/drug effects , Viral Load/drug effects , Virus Internalization , COVID-19 Drug Treatment
15.
J Med Chem ; 62(6): 3107-3121, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30835473

ABSTRACT

Triapine, an iron chelator that inhibits ribonucleotide reductase, has been evaluated in clinical trials for cancer treatment. Triapine in combination with other chemotherapeutic agents shows promising efficacy in certain hematologic malignancies; however, it is less effective against many advanced solid tumors, probably due to the unsatisfactory potency and pharmacokinetic properties. In this report, we developed a triapine derivative IC25 (10) with potent antitumor activity. 10 Preferentially inhibited the proliferation of hematopoietic cancers by inducing mitochondria reactive oxygen species production and mitochondrial dysfunction. Unlike triapine, 10 executed cytotoxic action in a copper-dependent manner. 10-Induced up-expression of thioredoxin-interacting protein resulted in decreased thioredoxin activity to permit c-Jun N-terminal kinase and p38 activation and ultimately led to the execution of the cell death program. Remarkedly, 10 showed good bioavailability and inhibited tumor growth in mouse xenograft models. Taken together, our study identifies compound 10 as a copper-dependent antitumor agent, which may be applied to the treatment of hematopoietic cancers.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Cell Death/drug effects , Copper/metabolism , Hematologic Neoplasms/pathology , Pyridines/pharmacology , Thiosemicarbazones/pharmacology , Animals , Biological Availability , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Activation , Hematologic Neoplasms/metabolism , Humans , MAP Kinase Kinase 4/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Pyridines/chemistry , Pyridines/pharmacokinetics , Reactive Oxygen Species/metabolism , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacokinetics , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL