Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 817
Filter
Add more filters

Publication year range
1.
EMBO J ; 42(6): e112096, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36734074

ABSTRACT

Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions.


Subject(s)
Dengue Virus , Dengue , Extracellular Vesicles , Zika Virus Infection , Zika Virus , Animals , Mice , Zika Virus Infection/prevention & control , Viral Proteins , Antibodies, Neutralizing , Antibodies, Viral , Dengue/prevention & control
2.
PLoS Genet ; 20(3): e1011170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38451917

ABSTRACT

The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.


Subject(s)
Testis , Zebrafish , Animals , Male , Female , Testis/metabolism , Zebrafish/genetics , Androgens/genetics , Androgens/metabolism , Gonads/metabolism , Sex Differentiation/genetics , Estrogens/genetics
3.
J Virol ; 98(6): e0049424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38757985

ABSTRACT

Mitochondria are energy producers in cells, which can affect viral replication by regulating the host innate immune signaling pathways, and the changes in their biological functions are inextricably linked the viral life cycle. In this study, we screened a library of 382 mitochondria-targeted compounds and identified the antiviral inhibitors of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme in the de novo synthesis pathway of pyrimidine ribonucleotides, against classical swine fever virus (CSFV). Our data showed that the inhibitors interfered with viral RNA synthesis in a dose-dependent manner, with half-maximal effective concentrations (EC50) ranging from 0.975 to 26.635 nM. Remarkably, DHODH inhibitors obstructed CSFV replication by enhancing the innate immune response including the TBK1-IRF3-STAT1 and NF-κB signaling pathways. Furthermore, the data from a series of compound addition and supplementation trials indicated that DHODH inhibitors also inhibited CSFV replication by blocking the de novo pyrimidine synthesis. Remarkably, DHODH knockdown demonstrated that it was essential for CSFV replication. Mechanistically, confocal microscopy and immunoprecipitation assays showed that the non-structural protein 4A (NS4A) recruited and interacted with DHODH in the perinuclear. Notably, NS4A enhanced the DHODH activity and promoted the generation of UMP for efficient viral replication. Structurally, the amino acids 65-229 of DHODH and the amino acids 25-40 of NS4A were pivotal for this interaction. Taken together, our findings highlight the critical role of DHODH in the CSFV life cycle and offer a potential antiviral target for the development of novel therapeutics against CSF. IMPORTANCE: Classical swine fever remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. dihydroorotate dehydrogenase (DHODH) inhibitors have been shown to suppress the replication of several viruses in vitro and in vivo, but the effects on Pestivirus remain unknown. In this study, three specific DHODH inhibitors, including DHODH-IN-16, BAY-2402234, and Brequinar were found to strongly suppress classical swine fever virus (CSFV) replication. These inhibitors target the host DHODH, depleting the pyrimidine nucleotide pool to exert their antiviral effects. Intriguingly, we observed that the non-structural protein 4A of CSFV induced DHODH to accumulate around the nucleus in conjunction with mitochondria. Moreover, NS4A exhibited a strong interaction with DHODH, enhancing its activity to promote efficient CSFV replication. In conclusion, our findings enhance the understanding of the pyrimidine synthesis in CSFV infection and expand the novel functions of CSFV NS4A in viral replication, providing a reference for further exploration of antiviral targets against CSFV.


Subject(s)
Antiviral Agents , Classical Swine Fever Virus , Dihydroorotate Dehydrogenase , Oxidoreductases Acting on CH-CH Group Donors , Viral Nonstructural Proteins , Virus Replication , Virus Replication/drug effects , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Classical Swine Fever Virus/physiology , Animals , Viral Nonstructural Proteins/metabolism , Swine , Antiviral Agents/pharmacology , Signal Transduction , Cell Line , Immunity, Innate , Mitochondria/metabolism , Classical Swine Fever/virology , Classical Swine Fever/metabolism , Humans , Biphenyl Compounds , Quinaldines
4.
Mol Ther ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822526

ABSTRACT

Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.

5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193960

ABSTRACT

Emerging microbe infections, such as Zika virus (ZIKV), pose an increasing threat to human health. Investigations on ZIKV replication have revealed the construction of replication complexes (RCs), but the role of cytoskeleton in this process is largely unknown. Here, we investigated the function of cytoskeletal intermediate filament protein vimentin in the life cycle of ZIKV infection. Using advanced imaging techniques, we uncovered that vimentin filaments undergo drastic reorganization upon viral protein synthesis to form a perinuclear cage-like structure that embraces and concentrates RCs. Genetic removal of vimentin markedly disrupted the integrity of RCs and resulted in fragmented subcellular dispersion of viral proteins. This led to reduced viral genome replication, viral protein production, and release of infectious virions, without interrupting viral binding and entry. Furthermore, mass spectrometry and RNA-sequencing screens identified interactions and interplay between vimentin and hundreds of endoplasmic reticulum (ER)-resident RNA-binding proteins. Among them, the cytoplasmic-region of ribosome receptor binding protein 1, an ER transmembrane protein that directly binds viral RNA, interacted with and was regulated by vimentin, resulting in modulation of ZIKV replication. Together, the data in our work reveal a dual role for vimentin as a structural element for RC integrity and as an RNA-binding-regulating hub during ZIKV infection, thus unveiling a layer of interplay between Zika virus and host cell.


Subject(s)
Vimentin/metabolism , Zika Virus Infection/metabolism , Animals , Cell Line , China , Cytoskeleton/metabolism , Endoplasmic Reticulum/metabolism , Host Microbial Interactions/physiology , Humans , Intermediate Filaments/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Vimentin/physiology , Viral Proteins/metabolism , Virus Replication/physiology , Zika Virus/metabolism , Zika Virus/pathogenicity , Zika Virus/physiology , Zika Virus Infection/virology
6.
Cancer Immunol Immunother ; 73(8): 143, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832955

ABSTRACT

This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue. Correlation analysis demonstrated a positive association between USP47 expression levels and infiltrating CD8+ T cells, neutrophils, and macrophages, while showing a negative correlation with NKT cells. Furthermore, using Usp47 knockout mice, we observed a slower tumor growth rate and reduced tumor burden. The absence of USP47 led to increased infiltration of immune cells, including neutrophils, macrophages, NK cells, NKT cells, and T cells. Additionally, USP47 deficiency resulted in enhanced activation of cytotoxic T lymphocytes (CTLs) and altered T cell subsets within the tumor microenvironment. These findings suggest that USP47 plays a critical role in modulating the tumor microenvironment and promoting antitumor immune responses, highlighting its potential as a therapeutic target in prostate cancer.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Mice, Knockout , Prostatic Neoplasms , Tumor Microenvironment , Animals , Male , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Mice , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Humans , Mice, Inbred C57BL , Cell Line, Tumor
7.
Planta ; 259(2): 45, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281265

ABSTRACT

MAIN CONCLUSION: The divergence of subsect. Gerardianae was likely triggered by the uplift of the Qinghai-Tibetan Plateau and adjacent mountains. Pinus bungeana might have probably experienced expansion since Last Interglacial period. Historical geological and climatic oscillations have profoundly affected patterns of nucleotide variability, evolutionary history, and species divergence in numerous plants of the Northern Hemisphere. However, how long-lived conifers responded to geological and climatic fluctuations in East Asia remain poorly understood. Here, based on paternally inherited chloroplast genomes and maternally inherited mitochondrial DNA markers, we investigated the population demographic history and molecular evolution of subsect. Gerardianae (only including three species, Pinus bungeana, P. gerardiana, and P. squamata) of Pinus. A low level of nucleotide diversity was found in P. bungeana (π was 0.00016 in chloroplast DNA sequences, and 0.00304 in mitochondrial DNAs). The haplotype-based phylogenetic topology and unimodal distributions of demographic analysis suggested that P. bungeana probably originated in the southern Qinling Mountains and experienced rapid population expansion since Last Interglacial period. Phylogenetic analysis revealed that P. gerardiana and P. squamata had closer genetic relationship. The species divergence of subsect. Gerardianae occurred about 27.18 million years ago (Mya) during the middle to late Oligocene, which was significantly associated with the uplift of the Qinghai-Tibetan Plateau and adjacent mountains from the Eocene to the mid-Pliocene. The molecular evolutionary analysis showed that two chloroplast genes (psaI and ycf1) were under positive selection, the genetic lineages of P. bungeana exhibited higher transition and nonsynonymous mutations, which were involved with the strongly environmental adaptation. These findings shed light on the population evolutionary history of white pine species and provide striking insights for comprehension of their species divergence and molecular evolution.


Subject(s)
Genome, Chloroplast , Pinus , Phylogeny , Pinus/genetics , Genome, Chloroplast/genetics , Evolution, Molecular , DNA, Chloroplast/genetics , DNA, Mitochondrial/genetics , Nucleotides , Demography , Genetic Variation
8.
BMC Infect Dis ; 24(1): 129, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267841

ABSTRACT

BACKGROUND: In HIV-1 infection, more than 95% of CD4+T cells die of caspase-1 mediated pyroptosis. What governs the increased susceptibility of CD4+T cells to pyroptosis is poorly understood. METHODS: Blood samples were obtained from 31 untreated HIV-infected patients (UNT), 29 antiretroviral therapy treated HIV-infected patients (ART), and 21 healthy control donors (HD). Plasma levels of IL-18 and IL-1ß, caspase-1 expression, mitochondrial mass (MM) and mitochondrial fusion/fisson genes of CD4+T subsets were measured. RESULTS: A significantly higher IL-18 level in plasma and MM level of CD4+T cells were found in HIV-infected patients (UNT and ART) compared to HD, and the MMhigh phenotype was manifested, related to increased caspase-1 expression. Moreover, the increased MM was more pronounced in the early differentiated and inactivated CD4+T cells. However, higher MM was not intrinsically linked to T cell differentiation disorder or excessive activation of the CD4+T cells. Mechanistically, the increased MM was significantly correlated with an elevated level of expression of the mitochondrial fusion gene mitofusin1. CONCLUSION: An increase in MM was associated with heightened sensitivity of CD4+T cells to pyroptosis, even in early differentiated and inactivated CD4+T cells, in patients with HIV-1 infection, regardless of whether patients were on antiretroviral therapy or not. These new revelations have uncovered a previously unappreciated challenge to immune reconstitution with antiretroviral therapy.


Subject(s)
HIV Infections , HIV-1 , Humans , Caspase 1 , T-Lymphocytes , Interleukin-18 , HIV Infections/drug therapy
9.
Qual Life Res ; 33(3): 745-752, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38064016

ABSTRACT

OBJECTIVE: This study aimed to translate and culturally adapt the standardized outcomes in nephrology-hemodialysis fatigue (SONG-HD fatigue) scale and to assess the psychometric properties of the Chinese version of the SONG-HD fatigue (C-SONG-HD fatigue) scale. METHODS: Forward and back translations were used to translate the SONG-HD fatigue scale into Chinese. We used the C-SONG-HD fatigue scale to survey Chinese patients undergoing hemodialysis (HD) in China. We examined the distribution of responses and floor and ceiling effects. Cronbach's alpha and McDonald's omega coefficient, intraclass coefficients, and Spearman correlations were used to assess internal consistency reliability, test-retest reliability, and convergent validity, respectively. Responsiveness was also evaluated. RESULTS: In total, 489 participants across southeast China, northwest China, and central China completed the study. The C-SONG-HD fatigue scale had good internal consistency (Cronbach's alpha coefficient 0.861, omega coefficient 0.916), test-retest reliability (intraclass correlation coefficient 0.695), and convergent validity (Spearman correlation 0.691). The analysis of all first-time HD patients did not show notable responsiveness, and only patients with temporary vascular access had good responsiveness with an effect size (ES) of 0.54, a standardized response mean (SRM) of 0.85, and a standard error of measurement (SEM) of 0.77. CONCLUSION: The Chinese version of the SONG-HD fatigue scale showed satisfactory reliability and validity in patients undergoing hemodialysis (HD) in China. It could be used as a tool to measure the fatigue of Chinese HD patients.


Subject(s)
Nephrology , Humans , Reproducibility of Results , Quality of Life/psychology , Surveys and Questionnaires , Renal Dialysis , Fatigue/therapy , China , Psychometrics , Translations
10.
Chem Biodivers ; 21(5): e202400210, 2024 May.
Article in English | MEDLINE | ID: mdl-38433548

ABSTRACT

Currently, natural products are one of the priceless options for finding novel chemical pharmaceutical entities. Ellipticine is a naturally occurring alkaloid isolated from the leaves of Ochrosia elliptica Labill. Ellipticine and its derivatives are characterized by multiple biological activities. The purpose of this review was to provide a critical and systematic assessment of ellipticine and its derivatives as bioactive molecules over the last 60 years. Publications focused mainly on the total synthesis of alkaloids of this type without any evaluation of bioactivity have been excluded. We have reviewed papers dealing with the synthesis, bioactivity evaluation and mechanism of action of ellipticine and its derivatives. It was found that ellipticine and its derivatives showed cytotoxicity, antimicrobial ability, and anti-inflammatory activity, among which cytotoxicity toward cancer cell lines was the most investigated aspect. The inhibition of DNA topoisomerase II was the most relevant mechanism for cytotoxicity. The PI3K/AKT pathway, p53 pathway, and MAPK pathway were also closely related to the antiproliferative ability of these compounds. In addition, the structure-activity relationship was deduced, and future prospects were outlined. We are confident that these findings will lay a scientific foundation for ellipticine-based drug development, especially for anticancer agents.


Subject(s)
Ellipticines , Ellipticines/pharmacology , Ellipticines/chemistry , Humans , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Molecular Structure , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification
11.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339020

ABSTRACT

The mechanism of fish gonadal sex differentiation is complex and regulated by multiple factors. It has been widely known that proper steroidogenesis in Leydig cells and sex-related genes in Sertoli cells play important roles in gonadal sex differentiation. In teleosts, the precise interaction of these signals during the sexual fate determination remains elusive, especially their effect on the bi-potential gonad during the critical stage of sexual fate determination. Recently, all-testis phenotypes have been observed in the cyp17a1-deficient zebrafish and common carp, as well as in cyp19a1a-deficient zebrafish. By mating cyp17a1-deficient fish with transgenic zebrafish Tg(piwil1:EGFP-nanos3UTR), germ cells in the gonads were labelled with enhanced green fluorescent protein (EGFP). We classified the cyp17a1-deficient zebrafish and their control siblings into primordial germ cell (PGC)-rich and -less groups according to the fluorescence area of the EGFP labelling. Intriguingly, the EGFP-labelled bi-potential gonads in cyp17a1+/+ fish from the PGC-rich group were significantly larger than those of the cyp17a1-/- fish at 23 days post-fertilization (dpf). Based on the transcriptome analysis, we observed that the cyp17a1-deficient fish of the PGC-rich group displayed a significantly upregulated expression of amh and gsdf compared to that of control fish. Likewise, the upregulated expressions of amh and gsdf were observed in cyp19a1a-deficient fish as examined at 23 dpf. This upregulation of amh and gsdf could be repressed by treatment with an exogenous supplement of estradiol. Moreover, tamoxifen, an effective antagonist of both estrogen receptor α and ß (ERα and Erß), upregulates the expression of amh and gsdf in wild-type (WT) fish. Using the cyp17a1- and cyp19a1a-deficient zebrafish, we provide evidence to show that the upregulated expression of amh and gsdf due to the compromised estrogen signaling probably determines their sexual fate towards testis differentiation. Collectively, our data suggest that estrogen signaling inhibits the expression of amh and gsdf during the critical time of sexual fate determination, which may broaden the scope of sex steroid hormones in regulating gonadal sex differentiation in fish.


Subject(s)
Peptide Hormones , Sex Determination Processes , Zebrafish , Animals , Female , Male , Anti-Mullerian Hormone/genetics , Anti-Mullerian Hormone/metabolism , Estrogens/metabolism , Gene Expression Regulation, Developmental , Gonads/metabolism , Ovary/metabolism , Peptide Hormones/genetics , Testis/metabolism , Transforming Growth Factor beta/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
12.
World J Microbiol Biotechnol ; 40(5): 154, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568465

ABSTRACT

D-chiro-inositol (DCI) is a potential drug for the treatment of type II diabetes and polycystic ovary syndrome. In order to effectively synthesize DCI in Corynebacterium glutamicum, the genes related to inositol catabolism in clusters iol1 and iol2 were knocked out in C. glutamicum SN01 to generate the chassis strain DCI-1. DCI-1 did not grow in and catabolize myo-inositol (MI). Subsequently, different exogenous and endogenous inosose isomerases were expressed in DCI-1 and their conversion ability of DCI from MI were compared. After fermentation, the strain DCI-7 co-expressing inosose isomerase IolI2 and inositol dehydrogenase IolG was identified as the optimal strain. Its DCI titer reached 3.21 g/L in the presence of 20 g/L MI. On this basis, the pH, temperature and MI concentration during whole-cell conversion of DCI by strain DCI-7 were optimized. Finally, the optimal condition that achieved the highest DCI titer of 6.96 g/L were obtained at pH 8.0, 37 °C and addition of 40 g/L MI. To our knowledge, it is the highest DCI titer ever reported.


Subject(s)
Corynebacterium glutamicum , Diabetes Mellitus, Type 2 , Inositol/analogs & derivatives , Female , Humans , Corynebacterium glutamicum/genetics , Metabolic Engineering
13.
Chin J Traumatol ; 27(1): 1-10, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065706

ABSTRACT

Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.


Subject(s)
B7-H1 Antigen , Immunomodulation , Mesenchymal Stem Cells , Humans , B7-H1 Antigen/metabolism , Mesenchymal Stem Cells/immunology , T-Lymphocytes/metabolism
14.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1785-1792, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38812190

ABSTRACT

From the perspective of lncRNA MALAT1 regulating cholesterol metabolism in chondrocytes, this paper explores the effect and mechanism of Tougu Xiaotong Capsules(TGXTC) in delaying the degeneration of osteoarthritis. After one week of adaptive feeding, 48(8-week-old) C57BL/6 mice were randomly divided into a blank group(12 mice) and a model group(36 mice) by random number table method. The mice in the model group were anesthetized by inhalation of 5% isoflurane, and the OA model was induced by Hulth method. The experiment randomly divided the mice into a model group(12 mice), a drug-positive group(taururso-deoxycholic acid)(12 mice), and a TGXTC group(12 mice). The drug-positive group was given 500 mg·kg~(-1) taurodeoxycholic acid by intragastric administration. TGXTC group was given TGXTC 368 mg·kg~(-1) by gavage. The blank group and model group were given the same amount of normal saline for four weeks. After the intervention, the mice in each group were killed under anesthesia, and the knee cartilage tissue was separated and collected. The morphologic changes of knee cartilage were observed. The level of lncRNA MALAT1 in the cartilage tissue was detected by real-time PCR. The protein expressions of ABCA1, ApoA1, LXRß, CHOP, and caspase-3 in mouse articular cartilage were detected by Western blot. Lentivirus-coated plasmid was used to transfect mouse chondrocytes with sh-MALAT1. The gene levels of lncRNA MALAT1 in mouse chondrocytes transfected with sh-MALAT1 were detected by real-time PCR. Western blot was used to detect the effect of TGXTC on the protein content of ABCA1, ApoA1, LXRß, CHOP, and caspase-3 in thapsigargin(TG)-induced mouse chondrocytes after lncRNA MALAT1 knockdown. Flow cytometry was used to detect the effect of TGXTC on apoptosis of TG-induced mouse chondrocytes after lncRNA MALAT1 knockdown. The results of HE and saffranine O staining showed that compared with the model group, the structure of the cartilage layer was basically intact; the damage degree of joint structure was significantly improved, and the cartilage matrix was significantly enhanced by saffranine O staining in the TGXTC group and drug-positive group. Compared with the model group, the lncRNA MALAT1 level was significantly decreased in the TGXTC group and drug-positive group. Compared with the model group, the protein content of ABCA1, ApoA1, and LXRß was significantly increased, while that of CHOP and caspase-3 in the TGXTC group and drug-positive group significantly decreased. Compared with the TG group, the lncRNA MALAT1 level in the TG+sh-MALAT1 group was decreased. The lncRNA MALAT1 level in the TG+sh-MA-LAT1+TGXTC group was increased compared with the TG+TGXTC group. Western blot results showed that compared with the model group, protein expressions of ABCA1, ApoA1, LXRß, CHOP, and caspase-3 in the TGXTC group were significantly decreased, after lncRNA MALAT1 knockdown, the regulation and apoptosis of ABCA1, ApoA1, LXRß, CHOP, and caspase-3 in TG-induced mouse chondrocytes were weakened by TGXTC. TGXTC can improve the disorder of cholesterol metabolism in OA chondrocytes and delay OA degeneration, which is closely related to the regulation of lncRNA MALAT1.


Subject(s)
Cholesterol , Chondrocytes , Drugs, Chinese Herbal , Mice, Inbred C57BL , Osteoarthritis , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chondrocytes/metabolism , Chondrocytes/drug effects , Mice , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/drug therapy , Cholesterol/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Male , Humans , Capsules
15.
BMC Genomics ; 24(1): 345, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349699

ABSTRACT

Poplar is one of the main urban and rural greening and shade tree species in the northern hemisphere, but its growth and development is always restricted by salt stress. R2R3-MYB transcription factor family is commonly involved in many biological processes during plant growth and stress endurance. In this study, PagMYB151 (Potri.014G035100) one of R2R3-MYB members related to salt stress and expressed in both nucleus and cell membrane was cloned from Populus alba × P. glandulosa to perfect the salt tolerance mechanism. Morphological and physiological indexes regulated by PagMYB151 were detected using the PagMYB151 overexpression (OX) and RNA interference (RNAi) transgenic poplar lines. Under salt stress conditions, compared with RNAi and the non-transgenic wild-type (WT) plants, the plant height, both aboveground and underground part fresh weight of OX was significantly increased. In addition, OX has a longer and finer root structure and a larger root surface area. The root activity of OX was also enhanced, which was significantly different from RNAi but not from WT under salt treatment. Under normal conditions, the stomatal aperture of OX was larger than WT, whereas this phenotype was not obvious after salt stress treatment. In terms of physiological indices, OX enhanced the accumulation of proline but reduced the toxicity of malondialdehyde to plants under salt stress. Combing with the transcriptome sequencing data, 6 transcription factors induced by salt stress and co-expressed with PagMYB151 were identified that may cooperate with PagMYB151 to function in salt stress responding process. This study provides a basis for further exploring the molecular mechanism of poplar PagMYB151 transcription factor under abiotic stress.


Subject(s)
Populus , Salt Tolerance , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/metabolism , Proline , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Bioorg Med Chem ; 82: 117234, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36906964

ABSTRACT

Cancer with low survival rates is the second main cause of death among all diseases in the world and consequently, effective antineoplastic agents are urgently needed. Allosecurinine is a plant-derived indolicidine securinega alkaloid shown bioactivity. The object of this study is to investigate synthetic allosecurinine derivatives with considerable anticancer capacity against nine human cancer cell lines as well as mechanism of action. We synthesized twenty-three novel allosecurinine derivatives and evaluated their antitumor activity against nine cancer cell lines for 72 h by MTT and CCK8 assays. FCM was applied to analyze the apoptosis, mitochondrial membrane potential, DNA content, ROS production, CD11b expression. Western blot was selected to analyze the protein expression. Structure-activity relationships were established and potential anticancer lead BA-3 which induced differentiation of leukemia cells towards granulocytosis at low concentration and apoptosis at high concentration was identified. Mechanism studies showed that mitochondrial pathway mediated apoptosis within cancer cells with cell cycle blocking was induced by BA-3. In addition, western blot assays revealed that BA-3 induced expression of the proapoptotic factor Bax, p21 and reduced the levels of antiapoptotic protein such as Bcl-2, XIAP, YAP1, PARP, STAT3, p-STAT3, and c-Myc. Collectively, BA-3 was a lead compound for oncotherapy at least in part, through the STAT3 pathway. These results were an important step in further studies on allosecurinine-based antitumor agent development.


Subject(s)
Alkaloids , Antineoplastic Agents , Heterocyclic Compounds, Bridged-Ring , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Heterocyclic Compounds, Bridged-Ring/pharmacology , Lactones/pharmacology , Apoptosis , Alkaloids/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor , Cell Line, Tumor
17.
Int J Colorectal Dis ; 38(1): 243, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37779168

ABSTRACT

PURPOSE: The present study aims to determine the rectoanal colonization rate and risk factors for the colonization of present multidrug-resistant bacteria (MDRBs). In addition, the relationship between MDRB colonization and surgical site infection (SSI) following hemorrhoidectomy was explored. METHODS: A cross-sectional study was conducted in the Department of Colorectal Surgery of two hospitals. Patients with hemorrhoid disease, who underwent hemorrhoidectomy, were included. The pre-surgical screening of multidrug-resistant Gram-negative bacteria (MDR-GNB) colonization was performed using rectal swabs on the day of admission. Then, the MDRB colonization rate was determined through the rectal swab. Logistic regression models were established to determine the risk factors for MDRB colonization and SSI after hemorrhoidectomy. A p-value of < 0.05 was considered statistically significant. RESULTS: A total of 432 patients met the inclusion criteria, and the MDRB colonization prevalence was 21.06% (91/432). The independent risk factors for MDRB colonization were as follows: patients who received ≥ 2 categories of antibiotic treatment within 3 months (odds ratio (OR): 3.714, 95% confidence interval (CI): 1.436-9.605, p = 0.007), patients with inflammatory bowel disease (IBD; OR: 6.746, 95% CI: 2.361-19.608, p < 0.001), and patients with high serum uric acid (OR: 1.006, 95% CI: 1.001-1.010, p = 0.017). Furthermore, 41.57% (37/89) of MDRB carriers and 1.81% (6/332) of non-carriers developed SSIs, with a total incidence of 10.21% (43/421). Based on the multivariable model, the rectoanal colonization of MDRBs (OR: 32.087, 95% CI: 12.052-85.424, p < 0.001) and hemoglobin < 100 g/L (OR: 4.130, 95% CI: 1.556-10.960, p = 0.004) were independently associated with SSI after hemorrhoidectomy. CONCLUSION: The rectoanal colonization rate of MDRBs in hemorrhoid patients is high, and this was identified as an independent risk factor for SSI after hemorrhoidectomy.


Subject(s)
Bacterial Infections , Hemorrhoidectomy , Hemorrhoids , Humans , Bacterial Infections/microbiology , Cross-Sectional Studies , Hemorrhoidectomy/adverse effects , Surgical Wound Infection/epidemiology , Surgical Wound Infection/etiology , Surgical Wound Infection/drug therapy , Hemorrhoids/surgery , Hemorrhoids/drug therapy , Uric Acid , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Risk Factors , Gram-Negative Bacteria
18.
Exp Cell Res ; 410(1): 112955, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34875217

ABSTRACT

The retinal pigment epithelium cells (RPE) are sensitive to oxidative stimuli due to long-term exposure to various environmental stimuli. Thus, the oxidative injury of RPE cells caused by the imbalance of redox homeostasis is one of the main pathogenic factors of age-related macular degeneration (AMD). But the sophisticated mechanisms linking AMD to oxidative stress are not fully elucidated. Activation of Nrf2 signal pathway can protect RPE cells from oxidative damage. The present study investigated the regulating mechanism of miR-125b in Nrf2 cascade and evaluated its antioxidant capacity. The in vitro studies indicated that overexpression of miR-125b substantially inhibited Keap1 expression, enhanced Nrf2 expression and induced Nrf2 nuclear translocation. Importantly, functional studies demonstrated that forced expression of miR-125b could significantly elevate cell proliferation and superoxide dismutase (SOD) levels while reduce reactive oxygen species (ROS) overproduction and malondialdehyde (MDA) formation. Further studies showed that miR-125b had no effect when Nrf2 was silenced in ARPE-19 cells. Additionally, the results identified that Nrf2 silence induced ROS accumulation enhances HIF-1α protein expression, while miR-125b could offset this effect via promoting HIF-1α protein degradation. Subsequent in vivo studies demonstrated that sodium iodate induced outer retina thinner was reversed with exogenous supplementation of miR-125b, which was cancelled in Nrf2 knockout mice. In conclusion, this study illustrated that miR-125b can protect RPE from oxidative damage via targeting Nrf2/HIF-1α signal pathway and potentially may serve as a therapeutic agent of AMD.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Macular Degeneration/genetics , MicroRNAs/genetics , NF-E2-Related Factor 2/genetics , Gene Expression Regulation/genetics , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Signal Transduction
19.
J Comput Assist Tomogr ; 47(6): 959-966, 2023.
Article in English | MEDLINE | ID: mdl-37948372

ABSTRACT

OBJECTIVE: This study aimed to perform an assessment of brain microstructure in children with autism aged 2 to 5 years using relaxation times acquired by synthetic magnetic resonance imaging. MATERIALS AND METHODS: Thirty-four children with autism spectrum disorder (ASD) (ASD group) and 17 children with global developmental delay (GDD) (GDD group) were enrolled, and synthetic magnetic resonance imaging was performed to obtain T1 and T2 relaxation times. The differences in brain relaxation times between the 2 groups of children were compared, and the correlation between significantly changed T1/T2 and clinical neuropsychological scores in the ASD group was analyzed. RESULTS: Compared with the GDD group, shortened T1 relaxation times in the ASD group were distributed in the genu of corpus callosum (GCC) ( P = 0.003), splenium of corpus callosum ( P = 0.002), and right thalamus (TH) ( P = 0.014), whereas shortened T2 relaxation times in the ASD group were distributed in GCC ( P = 0.011), left parietal white matter ( P = 0.035), and bilateral TH (right, P = 0.014; left, P = 0.016). In the ASD group, the T2 of the left parietal white matter is positively correlated with gross motor (developmental quotient [DQ] 2) and personal-social behavior (DQ5), respectively ( r = 0.377, P = 0.028; r = 0.392, P = 0.022); the T2 of the GCC was positively correlated with DQ5 ( r = 0.404, P = 0.018); and the T2 of the left TH is positively correlated with DQ2 and DQ5, respectively ( r = 0.433, P = 0.009; r = 0.377, P = 0.028). All significantly changed relaxation values were not significantly correlated with Childhood Autism Rating Scale scores. CONCLUSIONS: The shortened relaxometry times in the brain of children with ASD may be associated with the increased myelin content and decreased water content in the brain of children with ASD in comparison with GDD, contributing the understanding of the pathophysiology of ASD. Therefore, the T1 and T2 relaxometry may be used as promising imaging markers for ASD diagnosis.


Subject(s)
Autism Spectrum Disorder , Brain Diseases , White Matter , Humans , Child, Preschool , Child , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology
20.
BMC Geriatr ; 23(1): 557, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704972

ABSTRACT

BACKGROUND: An accurate evaluation of cognitive function, physical health, and psychological health is fundamental for assessing health problems in the elderly population, and it is important to identify the necessity of early therapeutic intervention. The objective of this study was to evaluate the states of mental and physical functions and to investigate the relationships between sociodemographic features and these functions in a community-dwelling elderly population. METHODS: This community-based cross-sectional study was conducted in a suburban district of Shanghai, China. A total of 1025 participants aged 60-89 years underwent investigations of demographic and lifestyle features and a multidimensional geriatric evaluation comprising the Montreal Cognitive Assessment (MoCA), Short Physical Performance Battery (SPPB), and Geriatric Depression Scale (GDS). RESULTS: The results of the multivariate linear regression models demonstrated that the MoCA and SPPB scores decreased with advancing age (all P < 0.01). However, the GDS score did not exhibit an age-related decrease (P = 0.09). Both sex and living alone influenced the MoCA score (P < 0.01 and P = 0.04, respectively), SPPB score (P < 0.01 and P = 0.04, respectively), and GDS score (P < 0.01 and P < 0.01, respectively). A higher education level was related to better MoCA and SPPB scores (all P < 0.01). Furthermore, age and sex had interactive effects on the MoCA score (P = 0.03) and SPPB score (P < 0.01). The kernel-weighted local polynomial smoothing curves exhibited similar trends. CONCLUSIONS: It is imperative to develop a more sensitive evaluation of physical function, and to encourage various intellectually and emotionally stimulating social activity strategies to promote healthy aging, especially in elderly women and those living alone who have a low education level.


Subject(s)
Cognition , Independent Living , Humans , Aged , Female , China/epidemiology , Cross-Sectional Studies , Mental Status and Dementia Tests
SELECTION OF CITATIONS
SEARCH DETAIL