Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioinformatics ; 38(21): 4953-4955, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36073903

ABSTRACT

SUMMARY: Current pharmacophore-based virtual screening (VS) software has limited interactive capabilities and less intuitive screening processes. In this study, a novel tool named VRPharmer is proposed to perform the entire VS workflow in VR environments. VRPharmer enables users to interactively perceive computation processes and immersively observe molecular structures. Besides a typical screening mode (OPT mode), VRPharmer provides a unique interactive screening mode (SCORE mode) for freely exploring the optimal binding poses. Pharmacophore models are editable to study the impact of each feature and further refine the screening results. Moreover, molecular rendering algorithms are improved for precise representations. AVAILABILITY AND IMPLEMENTATION: VRPharmer is open-source software under the MIT license. The released version is available at https://github.com/VRPharmer/VRPharmer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Virtual Reality , Workflow , Algorithms , Molecular Structure
2.
Sensors (Basel) ; 22(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35591263

ABSTRACT

In the context of the rapid development of blockchain technology, smart contracts have also been widely used in the Internet of Things, finance, healthcare, and other fields. There has been an explosion in the number of smart contracts, and at the same time, the security of smart contracts has received widespread attention because of the financial losses caused by smart contract vulnerabilities. Existing analysis tools can detect many smart contract security vulnerabilities, but because they rely too heavily on hard rules defined by experts when detecting smart contract vulnerabilities, the time to perform the detection increases significantly as the complexity of the smart contract increases. In the present study, we propose a novel hybrid deep learning model named CBGRU that strategically combines different word embedding (Word2Vec, FastText) with different deep learning methods (LSTM, GRU, BiLSTM, CNN, BiGRU). The model extracts features through different deep learning models and combine these features for smart contract vulnerability detection. On the currently publicly available dataset SmartBugs Dataset-Wild, we demonstrate that the CBGRU hybrid model has great smart contract vulnerability detection performance through a series of experiments. By comparing the performance of the proposed model with that of past studies, the CBGRU model has better smart contract vulnerability detection performance.


Subject(s)
Blockchain , Delivery of Health Care , Internet , Technology
3.
Sensors (Basel) ; 22(9)2022 May 08.
Article in English | MEDLINE | ID: mdl-35591270

ABSTRACT

Blockchain presents a chance to address the security and privacy issues of the Internet of Things; however, blockchain itself has certain security issues. How to accurately identify smart contract vulnerabilities is one of the key issues at hand. Most existing methods require large-scale data support to avoid overfitting; machine learning (ML) models trained on small-scale vulnerability data are often difficult to produce satisfactory results in smart contract vulnerability prediction. However, in the real world, collecting contractual vulnerability data requires huge human and time costs. To alleviate these problems, this paper proposed an ensemble learning (EL)-based contract vulnerability prediction method, which is based on seven different neural networks using contract vulnerability data for contract-level vulnerability detection. Seven neural network (NN) models were first pretrained using an information graph (IG) consisting of source datasets, which then were integrated into an ensemble model called Smart Contract Vulnerability Detection method based on Information Graph and Ensemble Learning (SCVDIE). The effectiveness of the SCVDIE model was verified using a target dataset composed of IG, and then its performances were compared with static tools and seven independent data-driven methods. The verification and comparison results show that the proposed SCVDIE method has higher accuracy and robustness than other data-driven methods in the target task of predicting smart contract vulnerabilities.


Subject(s)
Blockchain , Humans , Machine Learning , Neural Networks, Computer , Privacy
4.
Sensors (Basel) ; 22(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35746403

ABSTRACT

With countless devices connected to the Internet of Things, trust mechanisms are especially important. IoT devices are more deeply embedded in the privacy of people's lives, and their security issues cannot be ignored. Smart contracts backed by blockchain technology have the potential to solve these problems. Therefore, the security of smart contracts cannot be ignored. We propose a flexible and systematic hybrid model, which we call the Serial-Parallel Convolutional Bidirectional Gated Recurrent Network Model incorporating Ensemble Classifiers (SPCBIG-EC). The model showed excellent performance benefits in smart contract vulnerability detection. In addition, we propose a serial-parallel convolution (SPCNN) suitable for our hybrid model. It can extract features from the input sequence for multivariate combinations while retaining temporal structure and location information. The Ensemble Classifier is used in the classification phase of the model to enhance its robustness. In addition, we focused on six typical smart contract vulnerabilities and constructed two datasets, CESC and UCESC, for multi-task vulnerability detection in our experiments. Numerous experiments showed that SPCBIG-EC is better than most existing methods. It is worth mentioning that SPCBIG-EC can achieve F1-scores of 96.74%, 91.62%, and 95.00% for reentrancy, timestamp dependency, and infinite loop vulnerability detection.


Subject(s)
Blockchain , Computer Security , Humans , Privacy , Technology
5.
J Opt Soc Am A Opt Image Sci Vis ; 35(3): 480-490, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29522052

ABSTRACT

In this paper, we propose a method named region mosaicking on Laplacian pyramids (RMLP) to fuse multi-focus images that are captured by microscope. First, we apply the sum-modified Laplacian to measure the focus of multi-focus images. Then the density-based region growing algorithm is utilized to segment the focused region mask of each image. Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a Laplacian pyramid. The region level pyramid keeps more original information than the pixel level. The experiment results show that RMLP has the best performance in quantitative comparison with other methods. In addition, RMLP is insensitive to noise and can reduce the color distortion of the fused images on two datasets.

6.
PLoS One ; 13(5): e0191085, 2018.
Article in English | MEDLINE | ID: mdl-29771912

ABSTRACT

In this paper, a method named Region Mosaicking on Laplacian Pyramids (RMLP) is proposed to fuse multi-focus images that is captured by microscope. First, the Sum-Modified-Laplacian is applied to measure the focus of multi-focus images. Then the density-based region growing algorithm is utilized to segment the focused region mask of each image. Finally, the mask is decomposed into a mask pyramid to supervise region mosaicking on a Laplacian pyramid. The region level pyramid keeps more original information than the pixel level. The experiment results show that RMLP has best performance in quantitative comparison with other methods. In addition, RMLP is insensitive to noise and can reduces the color distortion of the fused images on two datasets.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Optical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL