Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.399
Filter
Add more filters

Publication year range
1.
Immunity ; 57(9): 2122-2139.e9, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39208806

ABSTRACT

The tumor microenvironment (TME) promotes metabolic reprogramming and dysfunction in immune cells. Here, we examined the impact of the TME on phospholipid metabolism in CD8+ T cells. In lung cancer, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were lower in intratumoral CD8+ T cells than in circulating CD8+ T cells. Intratumoral CD8+ T cells exhibited decreased expression of phospholipid phosphatase 1 (PLPP1), which catalyzes PE and PC synthesis. T cell-specific deletion of Plpp1 impaired antitumor immunity and promoted T cell death by ferroptosis. Unsaturated fatty acids in the TME stimulated ferroptosis of Plpp1-/- CD8+ T cells. Mechanistically, programmed death-1 (PD-1) signaling in CD8+ T cells induced GATA1 binding to the promoter region Plpp1 and thereby suppressed Plpp1 expression. PD-1 blockade increased Plpp1 expression and restored CD8+ T cell antitumor function but did not rescue dysfunction of Plpp1-/- CD8+ T cells. Thus, PD-1 signaling regulates phospholipid metabolism in CD8+ T cells, with therapeutic implications for immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Ferroptosis , Programmed Cell Death 1 Receptor , Signal Transduction , Tumor Microenvironment , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor/metabolism , Animals , Mice , Signal Transduction/immunology , Ferroptosis/immunology , Tumor Microenvironment/immunology , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Cell Line, Tumor
2.
Blood ; 143(13): 1293-1309, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38142410

ABSTRACT

ABSTRACT: Although it is caused by a single-nucleotide mutation in the ß-globin gene, sickle cell anemia (SCA) is a systemic disease with complex, incompletely elucidated pathologies. The mononuclear phagocyte system plays critical roles in SCA pathophysiology. However, how heterogeneous populations of hepatic macrophages contribute to SCA remains unclear. Using a combination of single-cell RNA sequencing and spatial transcriptomics via multiplexed error-robust fluorescence in situ hybridization, we identified distinct macrophage populations with diversified origins and biological functions in SCA mouse liver. We previously found that administering the von Willebrand factor (VWF)-cleaving protease ADAMTS13 alleviated vaso-occlusive episode in mice with SCA. Here, we discovered that the ADAMTS13-cleaved VWF was cleared from the circulation by a Clec4f+Marcohigh macrophage subset in a desialylation-dependent manner in the liver. In addition, sickle erythrocytes were phagocytized predominantly by Clec4f+Marcohigh macrophages. Depletion of macrophages not only abolished the protective effect of ADAMTS13 but exacerbated vaso-occlusive episode in mice with SCA. Furthermore, promoting macrophage-mediated VWF clearance reduced vaso-occlusion in SCA mice. Our study demonstrates that hepatic macrophages are important in the pathogenesis of SCA, and efficient clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in SCA mice.


Subject(s)
Anemia, Sickle Cell , Vascular Diseases , Mice , Animals , von Willebrand Factor/genetics , In Situ Hybridization, Fluorescence , Anemia, Sickle Cell/pathology , Macrophages/pathology , ADAMTS13 Protein/genetics
3.
Nat Mater ; 23(4): 527-534, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454027

ABSTRACT

The liquid-like feature of thermoelectric superionic conductors is a double-edged sword: the long-range migration of ions hinders the phonon transport, but their directional segregation greatly impairs the service stability. We report the synergetic enhancement in figure of merit (ZT) and stability in Cu1.99Se-based superionic conductors enabled by ion confinement effects. Guided by density functional theory and nudged elastic band simulations, we elevated the activation energy to restrict ion migrations through a cation-anion co-doping strategy. We reduced the carrier concentration without sacrificing the low thermal conductivity, obtaining a ZT of ∼3.0 at 1,050 K. Notably, the fabricated device module maintained a high conversion efficiency of up to ∼13.4% for a temperature difference of 518 K without obvious degradation after 120 cycles. Our work could be generalized to develop electrically and thermally robust functional materials with ionic migration characteristics.

4.
Nucleic Acids Res ; 51(D1): D853-D860, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36161321

ABSTRACT

Single-cell studies have delineated cellular diversity and uncovered increasing numbers of previously uncharacterized cell types in complex tissues. Thus, synthesizing growing knowledge of cellular characteristics is critical for dissecting cellular heterogeneity, developmental processes and tumorigenesis at single-cell resolution. Here, we present Cell Taxonomy (https://ngdc.cncb.ac.cn/celltaxonomy), a comprehensive and curated repository of cell types and associated cell markers encompassing a wide range of species, tissues and conditions. Combined with literature curation and data integration, the current version of Cell Taxonomy establishes a well-structured taxonomy for 3,143 cell types and houses a comprehensive collection of 26,613 associated cell markers in 257 conditions and 387 tissues across 34 species. Based on 4,299 publications and single-cell transcriptomic profiles of ∼3.5 million cells, Cell Taxonomy features multifaceted characterization for cell types and cell markers, involving quality assessment of cell markers and cell clusters, cross-species comparison, cell composition of tissues and cellular similarity based on markers. Taken together, Cell Taxonomy represents a fundamentally useful reference to systematically and accurately characterize cell types and thus lays an important foundation for deeply understanding and exploring cellular biology in diverse species.

5.
Nano Lett ; 24(15): 4665-4671, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587938

ABSTRACT

Effective bimetallic nanoelectrocatalysis demands precise control of composition, structure, and understanding catalytic mechanisms. To address these challenges, we employ a two-in-one approach, integrating online synthesis with real-time imaging of bimetallic Au@Metal core-shell nanoparticles (Au@M NPs) via electrochemiluminescence microscopy (ECLM). Within 120 s, online electrodeposition and in situ catalytic activity screening alternate. ECLM captures transient faradaic processes during potential switches, visualizes electrochemical processes in real-time, and tracks catalytic activity dynamics at the single-particle level. Analysis using ECL photon flux density eliminates size effects and yields quantitative electrocatalytic activity results. Notably, a nonlinear activity trend corresponding to the shell metal to Au surface atomic ratio is discerned, quantifying the optimal surface component ratio of Au@M NPs. This approach offers a comprehensive understanding of catalytic behavior during the deposition process with high spatiotemporal resolution, which is crucial for tailoring efficient bimetallic nanocatalysts for diverse applications.

6.
J Am Chem Soc ; 146(12): 8206-8215, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38412246

ABSTRACT

Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.

7.
Rep Prog Phys ; 87(10)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39260394

ABSTRACT

Thechirality-controlled two-mode Lipkin-Meshkov-Glick (LMG) modelsare mimicked in a potential hybrid quantum system, involving two ensembles of solid-state spins coupled to a pair of interconnected surface-acoustic-wave cavities. With the assistance of dichromatic classical optical drives featuring chiral designs, it can simulate two-mode LMG-type long-range spin-spin interactions with left-right asymmetry. For applications, this unconventional LMG model can not only engineer both ensembles of collective spins into two-mode spin-squeezed states but also simulate novel quantum critical phenomena and time crystal behaviors, among others. Since this acoustic-based system can generate ion-trap-like interactions without requiring any additional trapping techniques, our work is considered a fresh attempt at realizing chiral quantum manipulation of spin-spin interactions using acoustic hybrid systems.

8.
Apoptosis ; 29(7-8): 981-1006, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824478

ABSTRACT

Copper is a trace element required by the organism, but once the level of copper exceeds the threshold, it becomes toxic and even causes death. The underlying mechanisms of copper-induced death are inconclusive, with different studies showing different opinions on the mechanism of copper-induced death. Multiple investigations have shown that copper induces oxidative stress, endoplasmic reticulum stress, nucleolar stress, and proteasome inhibition, all of which can result in cell death. The latest research elucidates a copper-dependent death and denominates it as cuproptosis. Cuproptosis takes place through the combination of copper and lipoylated proteins of the tricarboxylic acid cycle, triggering agglomeration of lipoylated proteins and loss of iron-sulfur cluster proteins, leading to proteotoxic stress and ultimately death. Given the toxicity and necessity of copper, abnormal levels of copper lead to diseases such as neurological diseases and cancer. The development of cancer has a high demand for copper, neurological diseases involve the change of copper contents and the binding of copper to proteins. There is a close relationship between these two kinds of diseases and copper. Here, we summarize the mechanisms of copper-related death, and the association between copper and diseases, to better figure out the influence of copper in cell death and diseases, thus advancing the clinical remedy of these diseases.


Subject(s)
Copper , Neoplasms , Humans , Copper/metabolism , Animals , Neoplasms/metabolism , Neoplasms/pathology , Oxidative Stress , Endoplasmic Reticulum Stress , Cell Death , Apoptosis , Nervous System Diseases/metabolism , Nervous System Diseases/pathology
9.
Anal Chem ; 96(5): 2142-2151, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38258616

ABSTRACT

While three-dimensional (3D) DNA walking amplifiers hold considerable promise in the construction of advanced DNA-based fluorescent biosensors for bioimaging, they encounter certain difficulties such as inadequate sensitivity, premature activation, the need for exogenous propelling forces, and low reaction rates. In this contribution, a variety of profitable solutions have been explored. First, a catalytic hairpin assembly (CHA)-achieved nonenzymatic isothermal nucleic acid amplification is integrated to enhance sensitivity. Subsequently, one DNA component is simply functionalized with a photocleavage-bond to conduct a photoresponsive manner, whereby the target recognition occurs only when the biosensor is exposed to an external ultraviolet light source, overcoming premature activation during biodelivery. Furthermore, a special self-propelling walking mechanism is implemented by reducing biothiols to MnO2 nanosheets, thereby propelling forces that are self-supplied to a Mn2+-reliant DNAzyme. By carrying the biosensing system with a DNA molecular framework to induce a unique concentration localization effect, the nucleic acid contact reaction rate is notably elevated by 6 times. Following these, an ultrasensitive in vitro detection performance with a limit of detection down to 2.89 fM is verified for a cancer-correlated microRNA biomarker (miRNA-21). Of particular importance, our multiple concepts combined 3D DNA walking amplifier that enables highly efficient fluorescence bioimaging in live cells and even bodies, exhibiting a favorable application prospect in disease analysis.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , DNA, Catalytic/chemistry , Manganese Compounds , Oxides , DNA/chemistry , MicroRNAs/analysis , Biosensing Techniques/methods , Limit of Detection
10.
Cardiovasc Diabetol ; 23(1): 303, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152461

ABSTRACT

BACKGROUND: Patients with diabetes have an increased risk of developing heart failure with preserved ejection fraction (HFpEF). This study aimed to compare indices of myocardial deformation and perfusion between patients with type 2 diabetes mellitus (T2DM) with and without HFpEF and to investigate the relationship between myocardial strain and perfusion reserve. METHODS: This study included 156 patients with T2DM without obstructive coronary artery disease (CAD) and 50 healthy volunteers who underwent cardiac magnetic resonance (CMR) examination at our center. Patients with T2DM were subdivided into the T2DM-HFpEF (n = 74) and the T2DM-non-HFpEF (n = 82) groups. The parameters of left ventricular (LV) and left atrial (LA) strain as well as stress myocardial perfusion were compared. The correlation between myocardial deformation and perfusion parameters was also assessed. Mediation analyses were used to evaluate the direct and indirect effects of T2DM on LA strain. RESULTS: Patients with T2DM and HFpEF had reduced LV radial peak systolic strain rate (PSSR), LV circumferential peak diastolic strain rate (PDSR), LA reservoir strain, global myocardial perfusion reserve index (MPRI), and increased LA booster strain compared to patients with T2DM without HFpEF (all P < 0.05). Furthermore, LV longitudinal PSSR, LA reservoir, and LA conduit strain were notably impaired in patients with T2DM without HFpEF compared to controls (all P < 0.05), but LV torsion, LV radial PSSR, and LA booster strain compensated for these alterations (all P < 0.05). Multivariate linear regression analysis demonstrated that LA reservoir and LA booster strain were independently associated with global MPRI (ß = 0.259, P < 0.001; ß = - 0.326, P < 0.001, respectively). Further, the difference in LA reservoir and LA booster strain between patients with T2DM with and without HFpEF was totally mediated by global MPRI. Global stress PI, LA booster, global rest PI, and global MPRI showed high accuracy in diagnosing HFpEF among patients with T2DM (areas under the curve [AUC]: 0.803, 0.790, 0.740, 0.740, respectively). CONCLUSIONS: Patients with T2DM and HFpEF exhibited significant LV systolic and diastolic deformation, decreased LA reservoir strain, severe impairment of myocardial perfusion, and elevated LA booster strain that is a compensatory response in HFpEF. Global MPRI was identified as an independent influencing factor on LA reservoir and LA booster strain. The difference in LA reservoir and LA booster strain between patients with T2DM with and without HFpEF was totally mediated by global MPRI, suggesting a possible mechanistic link between microcirculation impairment and cardiac dysfunction in diabetes. Myocardial perfusion and LA strain may prove valuable for diagnosing and managing HFpEF in the future.


Subject(s)
Atrial Function, Left , Diabetes Mellitus, Type 2 , Heart Failure , Magnetic Resonance Imaging, Cine , Myocardial Perfusion Imaging , Predictive Value of Tests , Stroke Volume , Ventricular Function, Left , Humans , Male , Female , Middle Aged , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Myocardial Perfusion Imaging/methods , Aged , Heart Failure/physiopathology , Heart Failure/diagnostic imaging , Heart Failure/etiology , Heart Failure/diagnosis , Coronary Circulation , Case-Control Studies , Myocardial Contraction
11.
Cardiovasc Diabetol ; 23(1): 20, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195550

ABSTRACT

BACKGROUND: Remnant cholesterol (RC) is implicated in the risk of cardiovascular disease. However, comprehensive population-based studies elucidating its association with aortic valve calcium (AVC) progression are limited, rendering its precise role in AVC ambiguous. METHODS: From the Multi-Ethnic Study of Atherosclerosis database, we included 5597 individuals (61.8 ± 10.1 years and 47.5% men) without atherosclerotic cardiovascular disease at baseline for analysis. RC was calculated as total cholesterol minus high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), as estimated by the Martin/Hopkins equation. Using the adjusted Cox regression analyses, we examined the relationships between RC levels and AVC progression. Furthermore, we conducted discordance analyses to evaluate the relative AVC risk in RC versus LDL-C discordant/concordant groups. RESULTS: During a median follow-up of 2.4 ± 0.9 years, 568 (10.1%) participants exhibited AVC progression. After adjusting for traditional cardiovascular risk factors, the HRs (95% CIs) for AVC progression comparing the second, third, and fourth quartiles of RC levels with the first quartile were 1.195 (0.925-1.545), 1.322 (1.028-1.701) and 1.546 (1.188-2.012), respectively. Notably, the discordant high RC/low LDL-C group demonstrated a significantly elevated risk of AVC progression compared to the concordant low RC/LDL-C group based on their medians (HR, 1.528 [95% CI 1.201-1.943]). This pattern persisted when clinical LDL-C threshold was set at 100 and 130 mg/dL. The association was consistently observed across various sensitivity analyses. CONCLUSIONS: In atherosclerotic cardiovascular disease-free individuals, elevated RC is identified as a residual risk for AVC progression, independent of traditional cardiovascular risk factors. The causal relationship of RC to AVC and the potential for targeted RC reduction in primary prevention require deeper exploration.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Hypercholesterolemia , Male , Humans , Female , Calcium , Cholesterol, LDL , Aortic Valve/diagnostic imaging , Cholesterol , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology
12.
Ann Hematol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012517

ABSTRACT

This study aimed to assess the prognostic value of 18F-fluorodeoxyglucose positron emission tomography/computer tomography (18F-FDG PET/CT) in patients with relapsed multiple myeloma (MM). Fifty-one consecutive patients with relapsed MM were enrolled in this retrospective study. 18F-FDG parameters based on the Italian Myeloma Criteria for PET Use (IMPeTUs) and clinical data were analyzed for overall survival (OS) and progression-free survival (PFS). The Cox proportional risk model was used for univariate and multivariate analysis, and Kaplan-Meier survival curves were used for survival analysis. The median length of follow-up was 20 months (IQR, 5-29 months), the median PFS for the entire cohort was 8 months (IQR, 3-17 months) and the median OS was 21 months (IQR, 8-49 months). Multivariate survival analysis demonstrated that the Deauville score of BM > 3 [HR 2.900, 95% CI (1.011, 8.319), P = 0.048] and the presence of EMD [HR 3.134, 95% CI (1.245, 7.891), P = 0.015] were independent predictors of poor PFS. The presence of EMD [HR 12.777, 95% CI (1.825, 89.461), P = 0.010] and the reduced platelets count [HR 7.948, 95% CI (1.236, 51.099), P = 0.029] were adversely associated with OS. 18F-FDG PET/CT parameters based on IMPeTUs have prognostic significance in patients with relapsed MM.

13.
Neurochem Res ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190121

ABSTRACT

Emotional stress is a significant environmental risk factor for various mental health disabilities, such as anxiety. Electroacupuncture (EA) has been demonstrated to have pronounced anxiolytic effects. However, the neural mechanisms underlying these effects and their contribution to behavioral deficits remain poorly understood. Here, we addressed these issues using a classical mouse anxiety model induced by chronic restraint stress (CRS).Anxiety-like behaviors were evaluated with the open field test and elevated plus maze. Neuronal activation in various brain regions was marked using c-Fos, followed by calculations of interregional correlation to characterize a network that became functionally active following EA at the HT7 acupoint (EA-HT7). We selected the hub regions and further investigated their functions and connections in regulating anxiety-like behaviors by using a combination of chemogenetic manipulations and behavioral testing. CRS exposure induced anxiety-like behaviors. Interestingly, EA-HT7 mitigated these behavioral abnormalities. The c-Fos expression in 30 brain areas revealed a vital brain network for acupuncture responsiveness in naïve mice. Neural activity in the NAcSh (nucleus accumbens shell), BNST (bed nucleus of the stria terminalis), VMH (Ventromedial Hypothalamus), ARC (arcuate nucleus), dDG (dorsal dentate gyrus), and VTA (ventral tegmental area) was significantly altered following acupuncture. Notably, both c-Fos immunostaining and brain functional connectivity analysis revealed the significant activation of VTA following EA-HT7. Interestingly, blocking the VTA eliminated the anxiolytic effects of EA-HT7, whereas chemogenetic activation of the VTA replicated the therapeutic effects of EA-HT7. EA-HT7 has demonstrated benefits in treating anxiety and enhances brain functional connectivity. The VTA is functionally associated with the anxiolytic effects of EA-HT7.

14.
Eur Radiol ; 34(2): 1292-1301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37589903

ABSTRACT

OBJECTIVES: To explore the added value of arterial enhancement fraction (AEF) derived from dual-energy computed tomography CT (DECT) to conventional image features for diagnosing cervical lymph node (LN) metastasis in papillary thyroid cancer (PTC). METHODS: A total of 273 cervical LNs (153 non-metastatic and 120 metastatic) were recruited from 92 patients with PTC. Qualitative image features of LNs were assessed. Both single-energy CT (SECT)-derived AEF (AEFS) and DECT-derived AEF (AEFD) were calculated. Correlation between AEFD and AEFS was determined using Pearson's correlation coefficient. Multivariate logistic regression analysis with the forward variable selection method was used to build three models (conventional features, conventional features + AEFS, and conventional features + AEFD). Diagnostic performances were evaluated using receiver operating characteristic (ROC) curve analyses. RESULTS: Abnormal enhancement, calcification, and cystic change were chosen to build model 1 and the model provided moderate diagnostic performance with an area under the ROC curve (AUC) of 0.675. Metastatic LNs demonstrated both significantly higher AEFD (1.14 vs 0.48; p < 0.001) and AEFS (1.08 vs 0.38; p < 0.001) than non-metastatic LNs. AEFD correlated well with AEFS (r = 0.802; p < 0.001), and exhibited comparable performance with AEFS (AUC, 0.867 vs 0.852; p = 0.628). Combining CT image features with AEFS (model 2) and AEFD (model 3) could significantly improve diagnostic performances (AUC, 0.865 vs 0.675; AUC, 0.883 vs 0.675; both p < 0.001). CONCLUSIONS: AEFD correlated well with AEFS, and exhibited comparable performance with AEFS. Integrating qualitative CT image features with both AEFS and AEFD could further improve the ability in diagnosing cervical LN metastasis in PTC. CLINICAL RELEVANCE STATEMENT: Arterial enhancement fraction (AEF) values, especially AEF derived from dual-energy computed tomography, can help to diagnose cervical lymph node metastasis in patients with papillary thyroid cancer, and complement conventional CT image features for improved clinical decision making. KEY POINTS: • Metastatic cervical lymph nodes (LNs) demonstrated significantly higher arterial enhancement fraction (AEF) derived from dual-energy computed tomography (DECT) and single-energy CT (SECT)-derived AEF (AEFS) than non-metastatic LNs in patients with papillary thyroid cancer. • DECT-derived AEF (AEFD) correlated significantly with AEFS, and exhibited comparable performance with AEFS. • Integrating qualitative CT images features with both AEFS and AEFD could further improve the differential ability.


Subject(s)
Thyroid Neoplasms , Tomography, X-Ray Computed , Humans , Thyroid Cancer, Papillary/pathology , Lymphatic Metastasis/pathology , Tomography, X-Ray Computed/methods , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Thyroid Neoplasms/pathology , Retrospective Studies
15.
Diabetes Obes Metab ; 26(7): 2673-2683, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558498

ABSTRACT

AIM: To investigate the association between cardiovascular health metrics defined by Life's Essential 8 (LE8) scores and vascular complications among individuals with type 2 diabetes (T2D). MATERIALS AND METHODS: This prospective study included 11 033 participants with T2D, all devoid of macrovascular diseases (including cardiovascular and peripheral artery disease) and microvascular complications (e.g. diabetic retinopathy, neuropathy and nephropathy) at baseline from the UK Biobank. The LE8 score comprised eight metrics: smoking, body mass index, physical activity, non-high-density lipoprotein cholesterol, blood pressure, glycated haemoglobin, diet and sleep duration. Cox proportional hazards models were established to assess the associations of LE8 scores with incident macrovascular and microvascular complications. RESULTS: During a median follow-up of 12.1 years, we identified 1975 cases of incident macrovascular diseases and 1797 cases of incident microvascular complications. After adjusting for potential confounders, each 10-point increase in the LE8 score was associated with an 18% lower risk of macrovascular diseases and a 15% lower risk of microvascular complications. Comparing individuals in the highest and lowest quartiles of LE8 scores revealed hazard ratios of 0.55 (95% confidence interval 0.47-0.62) for incident macrovascular diseases, and 0.61 (95% confidence interval 0.53-0.70) for incident microvascular complications. This association remained robust across a series of sensitivity analyses and nearly all subgroups. CONCLUSION: Higher LE8 scores were associated with a lower risk of incident macrovascular and microvascular complications among individuals with T2D. These findings underscore the significance of adopting fundamental strategies to maintain optimal cardiovascular health and curtail the risk of developing diabetic vascular complications.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diabetic Angiopathies , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Male , Female , Prospective Studies , Middle Aged , Diabetic Angiopathies/epidemiology , Diabetic Angiopathies/etiology , United Kingdom/epidemiology , Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Adult , Risk Factors , Body Mass Index , Smoking/adverse effects , Smoking/epidemiology , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Exercise , Follow-Up Studies , Blood Pressure , Incidence
16.
Arterioscler Thromb Vasc Biol ; 43(9): 1684-1699, 2023 09.
Article in English | MEDLINE | ID: mdl-37409531

ABSTRACT

BACKGROUND: Excess aldosterone is implicated in vascular calcification (VC), but the mechanism by which aldosterone-MR (mineralocorticoid receptor) complex promotes VC is unclear. Emerging evidence indicates that long-noncoding RNA H19 (H19) plays a critical role in VC. We examined whether aldosterone-induced osteogenic differentiation of vascular smooth muscle cells (VSMCs) through H19 epigenetic modification of Runx2 (runt-related transcription factor-2) in a MR-dependent manner. METHODS: We induced in vivo rat model of chronic kidney disease using a high adenine and phosphate diet to explore the relationship among aldosterone, MR, H19, and VC. We also cultured human aortic VSMCs to explore the roles of H19 in aldosterone-MR complex-induced osteogenic differentiation and calcification of VSMCs. RESULTS: H19 and Runx2 were significantly increased in aldosterone-induced VSMC osteogenic differentiation and VC, both in vitro and in vivo, which were significantly blocked by the MR antagonist spironolactone. Mechanistically, our findings reveal that the aldosterone-activated MR bound to H19 promoter and increased its transcriptional activity, as determined by chromatin immunoprecipitation, electrophoretic mobility shift assay, and luciferase reporter assay. Silencing H19 increased microRNA-106a-5p (miR-106a-5p) expression, which subsequently inhibited aldosterone-induced Runx2 expression at the posttranscriptional level. Importantly, we observed a direct interaction between H19 and miR-106a-5p, and downregulation of miR-106a-5p efficiently reversed the suppression of Runx2 induced by H19 silencing. CONCLUSIONS: Our study clarifies a novel mechanism by which upregulation of H19 contributes to aldosterone-MR complex-promoted Runx2-dependent VSMC osteogenic differentiation and VC through sponging miR-106a-5p. These findings highlight a potential therapeutic target for aldosterone-induced VC.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Vascular Calcification , Humans , Rats , Animals , MicroRNAs/metabolism , Aldosterone/toxicity , RNA, Long Noncoding/metabolism , Osteogenesis , Vascular Calcification/chemically induced , Vascular Calcification/genetics , Vascular Calcification/metabolism , Myocytes, Smooth Muscle/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism
17.
Nanotechnology ; 35(40)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38964289

ABSTRACT

Liver cancer, which is well-known to us as one of human most prevalent malignancies across the globe, poses a significant risk to live condition and life safety of individuals in every region of the planet. It has been shown that immune checkpoint treatment may enhance survival benefits and make a significant contribution to patient prognosis, which makes it a promising and popular therapeutic option for treating liver cancer at the current time. However, there are only a very few numbers of patients who can benefit from the treatment and there also exist adverse events such as toxic effects and so on, which is still required further research and discussion. Fortunately, the clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) provides a potential strategy for immunotherapy and immune checkpoint therapy of liver cancer. In this review, we focus on elucidating the fundamentals of the recently developed CRISPR/Cas9 technology as well as the present-day landscape of immune checkpoint treatment which pertains to liver cancer. What's more, we aim to explore the molecular mechanism of immune checkpoint treatment in liver cancer based on CRISPR/Cas9 technology. At last, its encouraging and powerful potential in the future application of the clinic is discussed, along with the issues that already exist and the difficulties that must be overcome. To sum up, our ultimate goal is to create a fresh knowledge that we can utilize this new CRISPR/Cas9 technology for the current popular immune checkpoint therapy to overcome the treatment issues of liver cancer.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Liver Neoplasms , Humans , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Gene Editing/methods , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Animals
18.
Epilepsy Behav ; 153: 109665, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368787

ABSTRACT

BACKGROUND: Epilepsy is a very common neurological disease, and it is important to focus on both controlling seizures and alleviating the psychological problems associated with this disease.Anxiety is an important risk factor for epilepsy and seriously affects the quality of life of patients with epilepsy (PWE). However, several risk factors for anxiety in PWE are relatively controversial and understudied. This meta-analysis was performed to identify potential risk factors for anxiety in PWE with the aim of reducing the incidence of anxiety and improving the quality of life among the individuals. METHOD: The PubMed, Embase and Cochrane Library databases were systematically searched up to July 2023 to find eligible original English studies. All the search results were reviewed based on our inclusion and exclusion criteria. We calculated the combined odds ratios (ORs), standard mean differences (SMDs) and their corresponding 95% confidence intervals (CIs) to evaluate the effect of the included risk factors on anxiety in PWE. RESULTS: Twenty-four studies involving 5,403 PWE were ultimately included. The pooled results of our meta-analysis showed that female sex (OR = 1.67; 95 % CI: 1.30,2.15; p < 0.001), unmarried/divorced/widowed (OR = 0.83; 95 % CI: 0.72,0.96; p = 0.011), low socioeconomic status (OR = 0.47; 95 % CI: 0.33,0.67; p < 0.001), education levels below high school (OR = 1.74; 95 % CI: 1.36,2.23; p < 0.001), a history of trauma (OR = 2.53; 95 % CI: 1.69,3.78; p < 0.001), monotherapy (OR = 0.49; 95 % CI: 0.39,0.62; p < 0.001), AED-induced psychiatric side effects (OR = 2.45; 95 % CI: 1.20,4.98); p = 0.014), depression (OR = 5.45 95 % CI: 2.49,11.94; p < 0.001), a history of suicide (OR = 3.56; 95 % CI: 1.72,7.38; p = 0.001), and illness-related shame (OR = 2.76; 95 % CI: 2.17,3.52; p < 0.001) were risk factors for anxiety. CONCLUSION: This meta-analysis showed that female, unmarried, low socioeconomic status, education level below senior high school, a history of trauma, monotherapy, AED-induced psychiatric side effects, depression, a history of suicide, and shame were risk factors for anxiety in PWE. However, further research is needed to determine the effect of other potential risk factors on anxiety in PWE. In addition, most of the studies included in this meta-analysis were not uniform in scale, and the risk factors were not comprehensive; therefore, larger prospective studies in different countries are needed to further investigate these risk factors.


Subject(s)
Anxiety , Epilepsy , Humans , Epilepsy/psychology , Epilepsy/epidemiology , Epilepsy/complications , Risk Factors , Anxiety/epidemiology , Anxiety/etiology , Quality of Life/psychology
19.
Bioorg Chem ; 151: 107686, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111120

ABSTRACT

A series of novel quinazoline-derived EGFR/HER-2 dual-target inhibitors were designed and synthesized by heterocyclic-containing tail approach. The inhibitory activities against four human epidermal growth factor receptor (HER) isozymes (EGFR, HER-2, HER-3 and HER-4) of all new compounds so designed were investigated in vitro. Compound 12k was found to be the most effective and rather selective dual-target inhibitor of EGFR and HER-2 with inhibitory constant (IC50) values of 6.15 and 9.78 nM, respectively, which was more potent than the clinical used agent Lapatinib (IC50 = 8.41 and 9.41 nM). Meanwhile, almost all compounds showed excellent antiproliferative activities against four cancer cell models (A549, NCI-H1975, SK-BR-3 and MCF-7) and low damage to healthy cells. Among them, compound 12k also exhibited the most prominent antitumor activity. Moreover, the hit compound 12k could bind to EGFR and HER-2 stably in molecular docking and dynamics studies. The following wound healing assay revealed that compound 12k could inhibit the migration of SK-BR-3 cells. Further studies found that compound 12k could arrest cell cycle in the G0/G1 phase and induce SK-BR-3 cells apoptosis. Notably, compound 12k could effectively inhibit breast cancer growth with little toxicity in the SK-BR-3 cell xenograft model. Taken together, in vitro and in vivo results disclosed that compound 12k had high drug potential as a dual-target inhibitor of EGFR/HER-2 to inhibit breast cancer growth.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Protein Kinase Inhibitors , Quinazolines , Receptor, ErbB-2 , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Mice , Cell Line, Tumor , Molecular Docking Simulation , Apoptosis/drug effects , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Female
20.
Nutr Metab Cardiovasc Dis ; 34(6): 1571-1580, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38418351

ABSTRACT

BACKGROUND AND AIM: The present study aimed to investigate whether the mitochondrial KATP channel contributes to angiotensin II (Ang II)-induced vascular dysfunction, the development of hypertension, and atherosclerosis. METHODS AND RESULTS: ApoE (-/-) mice fed a high-fat diet were chronically infused with Ang II for eight weeks and concomitantly treated with losartan (ARB), apocynin, or 5-hydroxy decanoate (5-HD), or 3-methyladenine (3-MA). Systolic blood pressure was measured, and pathological changes of aortic or liver tissue were observed. Nitric oxide (NO), superoxide dismutase 2 (SOD2) levels and vasorelaxation rate were measured, and protein and mRNA expressions were examined by western blot and RT-PCR. Ang II-induced development of hypertension was suppressed not only by ARB, and apocynin but also by 5-HD or 3-MA. Ang II infusion decreased aortic NO production and relaxation, as well as SOD2 activity in liver, which were improved by all treatments. In addition, Ang II-induced activation of autophagy was suppressed by 5-HD in aortic tissue, furthermore, Ang II increases the atherosclerotic index in plasma and exacerbates the development of atherosclerosis by increases of fat deposition in the aorta and liver. Lipid metabolism-related mRNA expressions (LXR-α, LDLR, SRBI, Acca, and FASN) were changed by Ang II. Similarly, not only ARB, and apocynin, but also 5-HD and 3-MA suppressed Ang II-induced these changes. CONCLUSIONS: Our present findings evidence that mitochondrial KATP channel-mediated autophagy contributes to Ang II-induced vascular dysfunction, development of hypertension, and atherosclerosis.


Subject(s)
Angiotensin II , Atherosclerosis , Autophagy , Hypertension , Nitric Oxide , Superoxide Dismutase , Animals , Autophagy/drug effects , Male , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Hypertension/physiopathology , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/pathology , Nitric Oxide/metabolism , Atherosclerosis/chemically induced , Atherosclerosis/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/physiopathology , Mice, Knockout, ApoE , Mice, Inbred C57BL , Aorta/drug effects , Aorta/pathology , Aorta/metabolism , Aorta/physiopathology , Blood Pressure/drug effects , Mice , Disease Models, Animal , Liver/metabolism , Liver/pathology , Liver/drug effects , Vasodilation/drug effects , Diet, High-Fat , Potassium Channels
SELECTION OF CITATIONS
SEARCH DETAIL