Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Biol ; 20(1): 186, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002843

ABSTRACT

BACKGROUND: Karat (Musa troglodytarum L.) is an autotriploid Fe'i banana of the Australimusa section. Karat was domesticated independently in the Pacific region, and karat fruit are characterized by a pink sap, a deep yellow-orange flesh colour, and an abundance of ß-carotene. Karat fruit showed non-climacteric behaviour, with an approximately 215-day bunch filling time. These features make karat a valuable genetic resource for studying the mechanisms underlying fruit development and ripening and carotenoid biosynthesis. RESULTS: Here, we report the genome of M. troglodytarum, which has a total length of 603 Mb and contains 37,577 predicted protein-coding genes. After divergence from the most recent common ancestors, M. troglodytarum (T genome) has experienced fusion of ancestral chromosomes 8 and 9 and multiple translocations and inversions, unlike the high synteny with few rearrangements found among M. schizocarpa (S genome), M. acuminata (A genome) and M. balbisiana (B genome). Genome microsynteny analysis showed that the triplication of MtSSUIIs due to chromosome rearrangement may lead to the accumulation of carotenoids and ABA in the fruit. The expression of duplicated MtCCD4s is repressed during ripening, leading to the accumulation of α-carotene, ß-carotene and phytoene. Due to a long terminal repeat (LTR)-like fragment insertion upstream of MtERF11, karat cannot produce large amounts of ethylene but can produce ABA during ripening. These lead to non-climacteric behaviour and prolonged shelf-life, which contributes to an enrichment of carotenoids and riboflavin. CONCLUSIONS: The high-quality genome of M. troglodytarum revealed the genomic basis of non-climacteric behaviour and enrichment of carotenoids, riboflavin, flavonoids and free galactose and provides valuable resources for further research on banana domestication and breeding and the improvement of nutritional and bioactive qualities.


Subject(s)
Musa , Carotenoids/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Musa/genetics , Musa/metabolism , Plant Breeding , Riboflavin/genetics , Riboflavin/metabolism , beta Carotene/metabolism
2.
Commun Biol ; 5(1): 920, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36071139

ABSTRACT

Aechmea fasciata is one of the most popular bromeliads and bears a water-impounding tank with a vase-like rosette. The tank habit is a key innovation that has promoted diversity among bromeliads. To reveal the genomic basis of tank habit formation and ethylene-induced flowering, we sequenced the genome of A. fasciata and assembled 352 Mb of sequences into 24 chromosomes. Comparative genomic analysis showed that the chromosomes experienced at least two fissions and two fusions from the ancestral genome of A. fasciata and Ananas comosus. The gibberellin receptor gene GID1C-like was duplicated by a segmental duplication event. This duplication may affect GA signalling and promote rosette expansion, which may permit water-impounding tank formation. During ethylene-induced flowering, AfFTL2 expression is induced and targets the EIN3 binding site 'ATGTAC' by AfEIL1-like. The data provided here will serve as an important resource for studying the evolution and mechanisms underlying flowering time regulation in bromeliads.


Subject(s)
Ananas , Bromeliaceae , Bromeliaceae/metabolism , Ethylenes/metabolism , Habits , Water/metabolism
3.
Front Robot AI ; 8: 787187, 2021.
Article in English | MEDLINE | ID: mdl-35004865

ABSTRACT

Bio-inspirations from soft-bodied animals provide a rich design source for soft robots, yet limited literature explored the potential enhancement from rigid-bodied ones. This paper draws inspiration from the tooth profiles of the rigid claws of the Boston Lobster, aiming at an enhanced soft finger surface for underwater grasping using an iterative design process. The lobsters distinguish themselves from other marine animals with a pair of claws capable of dexterous object manipulation both on land and underwater. We proposed a 3-stage design iteration process that involves raw imitation, design parametric exploration, and bionic parametric exploitation on the original tooth profiles on the claws of the Boston Lobster. Eventually, 7 finger surface designs were generated and fabricated with soft silicone. We validated each design stage through many vision-based robotic grasping attempts against selected objects from the Evolved Grasping Analysis Dataset (EGAD). Over 14,000 grasp attempts were accumulated on land (71.4%) and underwater (28.6%), where we selected the optimal design through an on-land experiment and further tested its capability underwater. As a result, we observed an 18.2% improvement in grasping success rate at most from a resultant bionic finger surface design, compared with those without the surface, and a 10.4% improvement at most compared with the validation design from the previous literature. Results from this paper are relevant and consistent with the bioresearch earlier in 1911, showing the value of bionics. The results indicate the capability and competence of the optimal bionic finger surface design in an amphibious environment, which can contribute to future research in enhanced underwater grasping using soft robots.

4.
Sci Rep ; 10(1): 7348, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355186

ABSTRACT

Ethylene-triggered flowering is a common phenomenon in plants of the family Bromeliaceae, but its molecular mechanism remains unclear. As a classical group of small RNAs, microRNAs play an essential role in the regulation of flowering. In this study, we found that various miRNAs participate in the ethylene-triggered flowering process in Aechmea fasciata via small RNA sequencing using juvenile and adult plants treated with ethylene for 24 hours. Finally, 63 known miRNAs, 52 novel miRNAs and 1721 target genes were identified or predicted. Expression changes of specific miRNAs were validated by qRT-PCR and northern blotting. Some predicted targets, including SPL, GAMYB and ARF, were verified in RLM-RACE experiments. Gene Ontology (GO) and KEGG analysis showed that numerous developmental and RNA-related processes were enriched. Integrated analysis of the transcriptomic data with small RNA sequencing revealed that numerous miRNAs and targets involved in ethylene-triggered flowering in A. fasciata. Our study is helpful for illuminating the molecular basis of the ethylene-triggered flowering phenomenon in Bromeliaceae.


Subject(s)
Bromeliaceae/genetics , Bromeliaceae/physiology , Ethylenes/pharmacology , Flowers/genetics , Flowers/physiology , MicroRNAs/genetics , RNA, Plant/genetics , Bromeliaceae/drug effects , Flowers/drug effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL