Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Angew Chem Int Ed Engl ; 60(10): 5339-5347, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33205864

ABSTRACT

The Hepatitis C virus nonstructural protein 5A (NS5A) is a membrane-associated protein involved in multiple steps of the viral life cycle. Direct-acting antivirals (DAAs) targeting NS5A are a cornerstone of antiviral therapy, but the mode-of-action of these drugs is poorly understood. This is due to the lack of information on the membrane-bound NS5A structure. Herein, we present the structural model of an NS5A AH-linker-D1 protein reconstituted as proteoliposomes. We use highly sensitive proton-detected solid-state NMR methods suitable to study samples generated through synthetic biology approaches. Spectra analyses disclose that both the AH membrane anchor and the linker are highly flexible. Paramagnetic relaxation enhancements (PRE) reveal that the dimer organization in lipids requires a new type of NS5A self-interaction not reflected in previous crystal structures. In conclusion, we provide the first characterization of NS5A AH-linker-D1 in a lipidic environment shedding light onto the mode-of-action of clinically used NS5A inhibitors.


Subject(s)
Hepacivirus/chemistry , Lipid Bilayers/metabolism , Viral Nonstructural Proteins/metabolism , Lipid Bilayers/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphatidylethanolamines/chemistry , Protein Conformation, alpha-Helical , Protein Domains , Protein Multimerization , Proton Magnetic Resonance Spectroscopy , Viral Nonstructural Proteins/chemistry
2.
Chembiochem ; 21(10): 1453-1460, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31850615

ABSTRACT

Proton-detected 100 kHz magic-angle-spinning (MAS) solid-state NMR is an emerging analysis method for proteins with only hundreds of microgram quantities, and thus allows structural investigation of eukaryotic membrane proteins. This is the case for the cell-free synthesized hepatitis C virus (HCV) nonstructural membrane protein 4B (NS4B). We demonstrate NS4B sample optimization using fast reconstitution schemes that enable lipid-environment screening directly by NMR. 2D spectra and relaxation properties guide the choice of the best sample preparation to record 2D 1 H-detected 1 H,15 N and 3D 1 H,13 C,15 N correlation experiments with linewidths and sensitivity suitable to initiate sequential assignments. Amino-acid-selectively labeled NS4B can be readily obtained using cell-free synthesis, opening the door to combinatorial labeling approaches which should enable structural studies.


Subject(s)
Hepacivirus/metabolism , Lipids/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Protons , Viral Nonstructural Proteins/analysis , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Protein Conformation , Protein Conformation, alpha-Helical
3.
J Virol ; 92(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29167346

ABSTRACT

Hepatitis C virus (HCV) RNA replication occurs in tight association with remodeled host cell membranes, presenting as cytoplasmic accumulations of single-, double-, and multimembrane vesicles in infected cells. Formation of these so-called replication organelles is mediated by a complex interplay of host cell factors and viral replicase proteins. Of these, nonstructural protein 4B (NS4B), an integral transmembrane protein, appears to play a key role, but little is known about the molecular mechanisms of how this protein contributes to organelle biogenesis. Using forward and reverse genetics, we identified glycine zipper motifs within transmembrane helices 2 and 3 of NS4B that are critically involved in viral RNA replication. Foerster resonance energy transfer analysis revealed the importance of the glycine zippers in NS4B homo- and heterotypic self-interactions. Additionally, ultrastructural analysis using electron microscopy unraveled a prominent role of glycine zipper residues for the subcellular distribution and the morphology of HCV-induced double-membrane vesicles. Notably, loss-of-function NS4B glycine zipper mutants prominently induced single-membrane vesicles with secondary invaginations that might represent an arrested intermediate state in double-membrane vesicle formation. These findings highlight a so-far-unknown role of glycine residues within the membrane integral core domain for NS4B self-interaction and functional as well as structural integrity of HCV replication organelles.IMPORTANCE Remodeling of the cellular endomembrane system leading to the establishment of replication organelles is a hallmark of positive-strand RNA viruses. In the case of HCV, expression of the nonstructural proteins induces the accumulation of double-membrane vesicles that likely arise from a concerted action of viral and coopted cellular factors. However, the underlying molecular mechanisms are incompletely understood. Here, we identify glycine zipper motifs within HCV NS4B transmembrane segments 2 and 3 that are crucial for the protein's self-interaction. Moreover, glycine residues within NS4B transmembrane helices critically contribute to the biogenesis of functional replication organelles and, thus, efficient viral RNA replication. These results reveal how glycine zipper motifs in NS4B contribute to structural and functional integrity of the HCV replication organelles and, thus, viral RNA replication.


Subject(s)
Glycine/chemistry , Hepacivirus/physiology , Organelles/ultrastructure , Viral Nonstructural Proteins/metabolism , Virus Replication , Cell Line , Hepacivirus/genetics , Hepatitis C/virology , Humans , Protein Structure, Secondary , RNA, Viral/genetics , Viral Nonstructural Proteins/genetics
5.
J Biomol NMR ; 69(2): 81-91, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28900789

ABSTRACT

We here adapted the GRecon method used in electron microscopy studies for membrane protein reconstitution to the needs of solid-state NMR sample preparation. We followed in detail the reconstitution of the ABC transporter BmrA by dialysis as a reference, and established optimal reconstitution conditions using the combined sucrose/cyclodextrin/lipid gradient characterizing GRecon. We established conditions under which quantitative reconstitution of active protein at low lipid-to-protein ratios can be obtained, and also how to upscale these conditions in order to produce adequate amounts for NMR. NMR spectra recorded on a sample produced by GRecon showed a highly similar fingerprint as those recorded previously on samples reconstituted by dialysis. GRecon sample preparation presents a gain in time of nearly an order of magnitude for reconstitution, and shall represent a valuable alternative in solid-state NMR membrane protein sample preparation.


Subject(s)
Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Bacterial Proteins/chemistry , Lipids/chemistry , Mass Spectrometry , Membrane Transport Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods
6.
PLoS Pathog ; 11(3): e1004736, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25774920

ABSTRACT

Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.


Subject(s)
Hepacivirus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Amino Acid Sequence , Blotting, Western , Cell Line , Conserved Sequence , Electroporation , Enzyme Activation/physiology , Genome, Viral , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphorylation , Protein Structure, Quaternary , Transfection , Viral Nonstructural Proteins/chemistry , Virus Replication/physiology
7.
J Biomol NMR ; 65(2): 87-98, 2016 06.
Article in English | MEDLINE | ID: mdl-27233794

ABSTRACT

We describe the expression of the hepatitis C virus nonstructural protein 4B (NS4B), which is an integral membrane protein, in a wheat germ cell-free system, the subsequent purification and characterization of NS4B and its insertion into proteoliposomes in amounts sufficient for multidimensional solid-state NMR spectroscopy. First spectra of the isotopically [(2)H,(13)C,(15)N]-labeled protein are shown to yield narrow (13)C resonance lines and a proper, predominantly α-helical fold. Clean residue-selective leucine, isoleucine and threonine-labeling is demonstrated. These results evidence the suitability of the wheat germ-produced integral membrane protein NS4B for solid-state NMR. Still, the proton linewidth under fast magic angle spinning is broader than expected for a perfect sample and possible causes are discussed.


Subject(s)
Gene Expression , Magnetic Resonance Spectroscopy , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/isolation & purification , Amino Acid Sequence , Carbon-13 Magnetic Resonance Spectroscopy , Circular Dichroism , Humans , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Domains , Proteolipids/chemistry
8.
Protein Expr Purif ; 105: 39-46, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25306874

ABSTRACT

Membrane proteins are notoriously difficult to express in a soluble form. Here, we use wheat germ cell-free expression in the presence of various detergents to produce the non-structural membrane proteins 2, 4B and 5A of the hepatitis C virus (HCV). We show that lauryl maltose neopentyl glycol (MNG-3) and dodecyl octaethylene glycol ether (C12E8) detergents can yield essentially soluble membrane proteins at detergent concentrations that do not inhibit the cell-free reaction. This finding can be explained by the low critical micelle concentration (CMC) of these detergents, which keeps the monomer concentrations low while at the same time providing the necessary excess of detergent concentration above CMC required for full target protein solubilization. We estimate that a tenfold excess of detergent micelles with respect to the protein concentration is sufficient for solubilization, a number that we propose as a guideline for detergent screening assays.


Subject(s)
Cell-Free System , Detergents/chemistry , Hepacivirus/genetics , Membrane Proteins/metabolism , Recombinant Proteins/metabolism , Triticum/metabolism , Viral Proteins/metabolism , Membrane Proteins/genetics , Micelles , Recombinant Proteins/genetics , Viral Proteins/genetics
9.
Protein Expr Purif ; 116: 1-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26325423

ABSTRACT

Non-structural protein 2 (NS2) of the hepatitis C virus (HCV) is an integral membrane protein that contains a cysteine protease and that plays a central organizing role in assembly of infectious progeny virions. While the crystal structure of the protease domain has been solved, the NS2 full-length form remains biochemically and structurally uncharacterized because recombinant NS2 could not be prepared in sufficient quantities from cell-based systems. We show here that functional NS2 in the context of the NS2-NS3pro precursor protein, ensuring NS2-NS3 cleavage, can be efficiently expressed by using a wheat germ cell-free expression system. In this same system, we subsequently successfully produce and purify milligram amounts of a detergent-solubilized form of full-length NS2 exhibiting the expected secondary structure content. Furthermore, immuno-electron microscopy analyses of reconstituted proteoliposomes demonstrate NS2 association with model membranes.


Subject(s)
Hepacivirus/chemistry , Hepacivirus/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Cell-Free System/metabolism , Chromatography, Gel , Cloning, Molecular , Detergents/chemistry , Gene Expression , Hepatitis C/virology , Liposomes/chemistry , Membrane Lipids/chemistry , Molecular Sequence Data , Plasmids/genetics , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility , Triticum/genetics , Viral Nonstructural Proteins/isolation & purification
10.
Biosens Bioelectron ; 262: 116524, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38971036

ABSTRACT

The lateral flow assay (LFA) is an ideal technology for at-home medical diagnostic tests due to its ease of use, cost-effectiveness, and rapid results. Despite these advantages, only few LFAs, such as the pregnancy and COVID-19 tests, have been translated from the laboratory to the homes of patients. To date, the medical applicability of LFAs is limited by the fact that they only provide yes/no answers unless combined with optical readers that are too expensive for at-home applications. Furthermore, LFAs are unable to compete with the state-of-the-art technologies in centralized laboratories in terms of detection limits. To address those shortcomings, we have developed an electrochemical readout procedure to enable quantitative and sensitive LFAs. This technique is based on a voltage-triggered in-situ dissolution of gold nanoparticles, the conventional label used to visualize target-specific signals on the test line in LFAs. Following the dissolution, the amount of gold is measured by electroplating onto an electrode and subsequent electrochemical quantification of the deposited gold. The measured current has a low noise, which achieves superior detection limits compared to optical techniques where background light scattering is limiting the readout performance. In addition, the hardware for the readout was developed to demonstrate translatability towards low-cost electronics.

11.
Microorganisms ; 12(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38543642

ABSTRACT

This study compared SARS-CoV-2 RNA loads at different anatomical sites, and the impact of self-swabbing and food intake. Adult symptomatic patients with SARS-CoV-2 or non-SARS-CoV-2 respiratory tract infection were included between 2021 and 2022. Patients performed a nasal and buccal swab before a professionally collected nasopharyngeal/oropharyngeal swab (NOPS). Buccal swabs were collected fasting and after breakfast in a subgroup of patients. SARS-CoV-2 RNA loads were determined by nucleic acid testing. Swabbing convenience was evaluated using a survey. The median age of 199 patients was 54 years (interquartile range 38-68); 42% were female and 52% tested positive for SARS-CoV-2. The majority of patients (70%) were hospitalized. The mean SARS-CoV-2 RNA load was 6.6 log10 copies/mL (standard deviation (SD), ±1.5), 5.6 log10 copies/mL (SD ± 1.9), and 3.4 log10 copies/mL (SD ± 1.9) in the professionally collected NOPS, and self-collected nasal and buccal swabs, respectively (p < 0.0001). Sensitivity was 96.1% (95% CI 90.4-98.9) and 75.3% (95% CI 63.9-81.8) for the nasal and buccal swabs, respectively. After food intake, SARS-CoV-2 RNA load decreased (p = 0.0006). Buccal swabbing was the preferred sampling procedure for the patients. In conclusion, NOPS yielded the highest SARS-CoV-2 RNA loads. Nasal self-swabbing emerged as a reliable alternative in contrast to buccal swabs. If buccal swabs are used, they should be performed before food intake.

12.
PLoS Pathog ; 6(12): e1001233, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21187906

ABSTRACT

Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.


Subject(s)
Hepacivirus/chemistry , Viral Nonstructural Proteins/physiology , Virus Assembly , Hepacivirus/physiology , Lipids , Mutagenesis , Mutation , Protein Binding , Protein Transport , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virion , Virus Assembly/genetics
13.
J Gen Virol ; 90(Pt 5): 1071-1080, 2009 May.
Article in English | MEDLINE | ID: mdl-19264595

ABSTRACT

It has been demonstrated that both uncleaved, enzymitically inactive NS2/3 and cleaved NS2 proteins are rapidly degraded upon expression in cells, phenomena described to be blocked by the addition of proteasome inhibitors. As this degradation and its regulation potentially constitute an important strategy of the hepatitis C virus (HCV) to regulate the levels of its non-structural proteins, we further investigated the turnover of these proteins in relevant RNA replication systems. A lysine-mutagenesis approach was used in an effort to prevent protein degradation and determine any effect on various steps of the viral replication cycle. We show that, while NS2-lysine mutagenesis of protease-inactive NS2/3 results in a partial stabilization of this protein, the increased NS2/3 levels do not rescue the inability of NS2/3 protease inactive replicons to replicate, suggesting that uncleaved NS2/3 is unable to functionally replace NS3 in RNA replication. Furthermore, we show that the cleaved NS2 protein is rapidly degraded in several transient and stable RNA replicon systems and that NS2 from several different genotypes also has a short half-life, highlighting the potential importance of the regulation of NS2 levels for the viral life cycle. However, in contrast to uncleaved NS2/3, neither ubiquitin nor proteasomal degradation appear to be significantly involved in NS2 degradation. Finally, although NS2 lysine-to-arginine mutagenesis does not affect this protein's levels in a JFH-1 cell culture infection system, several of these residues are identified to be involved in virion assembly, further substantiating the importance of regions of this protein for production of infectious virus.


Subject(s)
Cysteine Endopeptidases/chemistry , Hepacivirus/physiology , Lysine/chemistry , Viral Nonstructural Proteins/chemistry , Virus Assembly/physiology , Cell Line , Cysteine Endopeptidases/genetics , Cysteine Proteinase Inhibitors/pharmacology , DNA, Viral/genetics , Gene Expression Regulation, Viral/physiology , Genome, Viral , Genotype , Hepacivirus/drug effects , Hepacivirus/genetics , Humans , Leupeptins/pharmacology , Lysine/genetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Viral Nonstructural Proteins/genetics
14.
J Biol Chem ; 283(42): 28546-62, 2008 Oct 17.
Article in English | MEDLINE | ID: mdl-18644781

ABSTRACT

The hepatitis C virus (HCV) is a flavivirus replicating in the cytoplasm of infected cells. The HCV genome is a single-stranded RNA encoding a polyprotein that is cleaved by cellular and viral proteases into 10 different products. While the structural proteins core protein, envelope protein 1 (E1) and E2 build up the virus particle, most nonstructural (NS) proteins are required for RNA replication. One of the least studied proteins is NS2, which is composed of a C-terminal cytosolic protease domain and a highly hydrophobic N-terminal domain. It is assumed that the latter is composed of three trans-membrane segments (TMS) that tightly attach NS2 to intracellular membranes. Taking advantage of a system to study HCV assembly in a hepatoma cell line, in this study we performed a detailed characterization of NS2 with respect to its role for virus particle assembly. In agreement with an earlier report ( Jones, C. T., Murray, C. L., Eastman, D. K., Tassello, J., and Rice, C. M. (2007) J. Virol. 81, 8374-8383 ), we demonstrate that the protease domain, but not its enzymatic activity, is required for infectious virus production. We also show that serine residue 168 in NS2, implicated in the phosphorylation and stability of this protein, is dispensable for virion formation. In addition, we determined the NMR structure of the first TMS of NS2 and show that the N-terminal segment (amino acids 3-11) forms a putative flexible helical element connected to a stable alpha-helix (amino acids 12-21) that includes an absolutely conserved helix side in genotype 1b. By using this structure as well as the amino acid conservation as a guide for a functional study, we determined the contribution of individual amino acid residues in TMS1 for HCV assembly. We identified several residues that are critical for virion formation, most notably a central glycine residue at position 10 of TMS1. Finally, we demonstrate that mutations in NS2 blocking HCV assembly can be rescued by trans-complementation.


Subject(s)
Hepacivirus/metabolism , Viral Nonstructural Proteins/chemistry , Adenosine Triphosphate/chemistry , Cell Line, Tumor , Cell Membrane/metabolism , Cloning, Molecular , Humans , Magnetic Resonance Spectroscopy , Models, Biological , Molecular Conformation , Mutation , Phosphorylation , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship , Viral Nonstructural Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL