Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Publication year range
1.
Trends Genet ; 40(4): 337-351, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395682

ABSTRACT

Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems.


Subject(s)
Biological Evolution , Selection, Genetic , Animals , Snails/genetics , Genome/genetics , Genetic Speciation
2.
Environ Microbiol ; 25(9): 1659-1673, 2023 09.
Article in English | MEDLINE | ID: mdl-37032322

ABSTRACT

Sandy beaches are biogeochemical hotspots that bridge marine and terrestrial ecosystems via the transfer of organic matter, such as seaweed (termed wrack). A keystone of this unique ecosystem is the microbial community, which helps to degrade wrack and re-mineralize nutrients. However, little is known about this community. Here, we characterize the wrackbed microbiome as well as the microbiome of a primary consumer, the seaweed fly Coelopa frigida, and examine how they change along one of the most studied ecological gradients in the world, the transition from the marine North Sea to the brackish Baltic Sea. We found that polysaccharide degraders dominated both microbiomes, but there were still consistent differences between wrackbed and fly samples. Furthermore, we observed a shift in both microbial communities and functionality between the North and Baltic Sea driven by changes in the frequency of different groups of known polysaccharide degraders. We hypothesize that microbes were selected for their abilities to degrade different polysaccharides corresponding to a shift in polysaccharide content in the different seaweed communities. Our results reveal the complexities of both the wrackbed microbial community, with different groups specialized to different roles, and the cascading trophic consequences of shifts in the near shore algal community.


Subject(s)
Ecosystem , Microbiota , North Sea , Phylogeography , Microbiota/genetics , Baltic States
3.
Mol Ecol ; 32(15): 4209-4223, 2023 08.
Article in English | MEDLINE | ID: mdl-37199478

ABSTRACT

Why species that in their core areas mainly reproduce sexually become enriched with clones in marginal populations ("geographic parthenogenesis") remains unclear. Earlier hypotheses have emphasized that selection might promote clonality because it protects locally adapted genotypes. On the other hand, it also hampers recombination and adaptation to changing conditions. The aim of the present study was to investigate the early stages of range expansion in a partially clonal species and what drives an increase in cloning during such expansion. We used genome-wide sequencing to investigate the origin and evolution of large clones formed in a macroalgal species (Fucus vesiculosus) during a recent expansion into the postglacial Baltic Sea. We found low but persistent clonality in core populations, while at range margins, large dominant clonal lineages had evolved repeatedly from different sexual populations. A range expansion model showed that even when asexual recruitment is less favourable than sexual recruitment in core populations, repeated bottlenecks at the expansion front can establish a genetically eroded clonal wave that spreads ahead of a sexual wave into the new area. Genetic variation decreases by drift following repeated bottlenecks at the expansion front. This results in the emerging clones having low expected heterozygosity, which corroborated our empirical observations. We conclude that Baker's Law (clones being favoured by uniparental reproductive assurance in new areas) can play an important role during range expansion in partially clonal species, resulting in a complex spatiotemporal mosaic of clonal and sexual lineages that might persist during thousands of generations.


Subject(s)
Genomics , Parthenogenesis , Reproduction , Genotype , Genetic Variation/genetics
4.
Mol Ecol ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697448

ABSTRACT

Phytoplankton have short generation times, flexible reproduction strategies, large population sizes and high standing genetic diversity, traits that should facilitate rapid evolution under directional selection. We quantified local adaptation of copper tolerance in a population of the diatom Skeletonema marinoi from a mining-exposed inlet in the Baltic Sea and in a non-exposed population 100 km away. We hypothesized that mining pollution has driven evolution of elevated copper tolerance in the impacted population of S. marinoi. Assays of 58 strains originating from sediment resting stages revealed no difference in the average tolerance to copper between the two populations. However, variation within populations was greater at the mining site, with three strains displaying hyper-tolerant phenotypes. In an artificial evolution experiment, we used a novel intraspecific metabarcoding locus to track selection and quantify fitness of all 58 strains during co-cultivation in one control and one toxic copper treatment. As expected, the hyper-tolerant strains enabled rapid evolution of copper tolerance in the mining-exposed population through selection on available strain diversity. Within 42 days, in each experimental replicate a single strain dominated (30%-99% abundance) but different strains dominated the different treatments. The reference population developed tolerance beyond expectations primarily due to slowly developing plastic response in one strain, suggesting that different modes of copper tolerance are present in the two populations. Our findings provide novel empirical evidence that standing genetic diversity of phytoplankton resting stage allows populations to evolve rapidly (20-50 generations) and flexibly on timescales relevant for seasonal bloom progressions.

5.
J Evol Biol ; 36(12): 1761-1782, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37942504

ABSTRACT

Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.


Subject(s)
Chromosome Inversion , Chromosomes , Humans , Heterozygote , Evolution, Molecular
6.
Mol Biol Evol ; 38(2): 676-685, 2021 01 23.
Article in English | MEDLINE | ID: mdl-32898261

ABSTRACT

Acorn barnacle adults experience environmental heterogeneity at various spatial scales of their circumboreal habitat, raising the question of how adaptation to high environmental variability is maintained in the face of strong juvenile dispersal and mortality. Here, we show that 4% of genes in the barnacle genome experience balancing selection across the entire range of the species. Many of these genes harbor mutations maintained across 2 My of evolution between the Pacific and Atlantic oceans. These genes are involved in ion regulation, pain reception, and heat tolerance, functions which are essential in highly variable ecosystems. The data also reveal complex population structure within and between basins, driven by the trans-Arctic interchange and the last glaciation. Divergence between Atlantic and Pacific populations is high, foreshadowing the onset of allopatric speciation, and suggesting that balancing selection is strong enough to maintain functional variation for millions of years in the face of complex demography.


Subject(s)
Gene-Environment Interaction , Selection, Genetic , Thoracica/genetics , Animals , Europe , North America , Phylogeography
7.
BMC Public Health ; 22(1): 85, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027034

ABSTRACT

BACKGROUND: Knowledge of what is uplifting and helpful during pandemics could inform the design of sustainable pandemic recommendations in the future. We have explored individuals' views on helpful and uplifting aspects of everyday life during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Participants answered a brief, daily survey via text messages during 14 consecutive days in July-August, 2020. The survey included the question: "During the past 24 hours, is there anything that has made you feel good or helped you in your life?" We used content analysis to compile responses from 693 participants, who provided 4,490 free-text answers, which resulted in 24 categories subsumed under 7 themes. RESULTS: Positive aspects during the COVID-19 pandemic primarily related to social interactions, in real life or digitally, with family, friends and others. Other important aspects concerning work, colleagues and maintaining everyday life routines. One theme concerning vacations, going on excursions and being in nature. Leisure and recreation activities, such as hobbies and physical exercise, also emerged as important, as did health-related factors. Bodily sensations, thoughts, feelings and activities that benefited well-being were mentioned frequently. Lastly, people commented on the government strategies for containing COVID-19, and whether to comply with restrictions. CONCLUSIONS: To summarize, daily uplifts and helpful aspects of everyday life centered around social relationships. To comply with recommendations on physical distancing, people found creative ways to maintain social connections both digitally and face-to-face. Social interaction, maintenance of everyday life routines, hobbies and physical activity appeared to be important for well-being.


Subject(s)
COVID-19 , Pandemics , Government , Humans , SARS-CoV-2 , Surveys and Questionnaires
8.
Mol Ecol ; 30(15): 3797-3814, 2021 08.
Article in English | MEDLINE | ID: mdl-33638231

ABSTRACT

Combining hybrid zone analysis with genomic data is a promising approach to understanding the genomic basis of adaptive divergence. It allows for the identification of genomic regions underlying barriers to gene flow. It also provides insights into spatial patterns of allele frequency change, informing about the interplay between environmental factors, dispersal and selection. However, when only a single hybrid zone is analysed, it is difficult to separate patterns generated by selection from those resulting from chance. Therefore, it is beneficial to look for repeatable patterns across replicate hybrid zones in the same system. We applied this approach to the marine snail Littorina saxatilis, which contains two ecotypes, adapted to wave-exposed rocks vs. high-predation boulder fields. The existence of numerous hybrid zones between ecotypes offered the opportunity to test for the repeatability of genomic architectures and spatial patterns of divergence. We sampled and phenotyped snails from seven replicate hybrid zones on the Swedish west coast and genotyped them for thousands of single nucleotide polymorphisms. Shell shape and size showed parallel clines across all zones. Many genomic regions showing steep clines and/or high differentiation were shared among hybrid zones, consistent with a common evolutionary history and extensive gene flow between zones, and supporting the importance of these regions for divergence. In particular, we found that several large putative inversions contribute to divergence in all locations. Additionally, we found evidence for consistent displacement of clines from the boulder-rock transition. Our results demonstrate patterns of spatial variation that would not be accessible without continuous spatial sampling, a large genomic data set and replicate hybrid zones.


Subject(s)
Adaptation, Biological/genetics , Gene Flow , Animals , Ecotype , Genome , Genomics , Snails/genetics
9.
Mol Ecol ; 30(23): 6417-6433, 2021 12.
Article in English | MEDLINE | ID: mdl-33960035

ABSTRACT

The northern acorn barnacle (Semibalanus balanoides) is a robust system to study the genetic basis of adaptations to highly heterogeneous environments. Adult barnacles may be exposed to highly dissimilar levels of thermal stress depending on where they settle in the intertidal (i.e., closer to the upper or lower tidal boundary). For instance, barnacles near the upper tidal limit experience episodic summer temperatures above recorded heat coma levels. This differential stress at the microhabitat level is also dependent on the aspect of sun exposure. In the present study, we used pool-seq approaches to conduct a genome wide screen for loci responding to intertidal zonation across the North Atlantic basin (Maine, Rhode Island, and Norway). Our analysis discovered 382 genomic regions containing SNPs which are consistently zonated (i.e., SNPs whose frequencies vary depending on their position in the rocky intertidal) across all surveyed habitats. Notably, most zonated SNPs are young and private to the North Atlantic. These regions show high levels of genetic differentiation across ecologically extreme microhabitats concomitant with elevated levels of genetic variation and Tajima's D, suggesting the action of non-neutral processes. Overall, these findings support the hypothesis that spatially heterogeneous selection is a general and repeatable feature for this species, and that natural selection can maintain functional genetic variation in heterogeneous environments.


Subject(s)
Thoracica , Adaptation, Physiological/genetics , Animals , Genomics , Nucleotides , Selection, Genetic , Thoracica/genetics
10.
J Evol Biol ; 34(1): 4-15, 2021 01.
Article in English | MEDLINE | ID: mdl-33460491

ABSTRACT

Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using model-based approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity.


Subject(s)
Aquatic Organisms/genetics , Genetic Speciation , Animals , Ecosystem , Genetic Introgression , Oceans and Seas , Reproductive Isolation
11.
J Evol Biol ; 34(1): 97-113, 2021 01.
Article in English | MEDLINE | ID: mdl-32935387

ABSTRACT

Low dispersal marine intertidal species facing strong divergent selective pressures associated with steep environmental gradients have a great potential to inform us about local adaptation and reproductive isolation. Among these, gastropods of the genus Littorina offer a unique system to study parallel phenotypic divergence resulting from adaptation to different habitats related with wave exposure. In this study, we focused on two Littorina fabalis ecotypes from Northern European shores and compared patterns of habitat-related phenotypic and genetic divergence across three different geographic levels (local, regional and global). Geometric morphometric analyses revealed that individuals from habitats moderately exposed to waves usually present a larger shell size with a wider aperture than those from sheltered habitats. The phenotypic clustering of L. fabalis by habitat across most locations (mainly in terms of shell size) support an important role of ecology in morphological divergence. A genome scan based on amplified fragment length polymorphisms (AFLPs) revealed a heterogeneous pattern of differentiation across the genome between populations from the two different habitats, suggesting ecotype divergence in the presence of gene flow. The contrasting patterns of genetic structure between nonoutlier and outlier loci, and the decreased sharing of outlier loci with geographic distance among locations are compatible with parallel evolution of phenotypic divergence, with an important contribution of gene flow and/or ancestral variation. In the future, model-based inference studies based on sequence data across the entire genome will help unravelling these evolutionary hypotheses, improving our knowledge about adaptation and its influence on diversification within the marine realm.


Subject(s)
Biological Evolution , Ecotype , Snails/genetics , Animals , Europe , Female , Male , Phylogeography , Snails/anatomy & histology
12.
J Evol Biol ; 34(1): 138-156, 2021 01.
Article in English | MEDLINE | ID: mdl-32573797

ABSTRACT

Studies of colonization of new habitats that appear from rapidly changing environments are interesting and highly relevant to our understanding of divergence and speciation. Here, we analyse phenotypic and genetic variation involved in the successful establishment of a marine fish (sand goby, Pomatoschistus minutus) over a steep salinity drop from 35 PSU in the North Sea (NE Atlantic) to two PSU in the inner parts of the post-glacial Baltic Sea. We first show that populations are adapted to local salinity in a key reproductive trait, the proportion of motile sperm. Thereafter, we show that genome variation at 22,190 single nucleotide polymorphisms (SNPs) shows strong differentiation among populations along the gradient. Sequences containing outlier SNPs and transcriptome sequences, mapped to a draft genome, reveal associations with genes with relevant functions for adaptation in this environment but without overall evidence of functional enrichment. The many contigs involved suggest polygenic differentiation. We trace the origin of this differentiation using demographic modelling and find the most likely scenario is that at least part of the genetic differentiation is older than the Baltic Sea and is a result of isolation of two lineages prior to the current contact over the North Sea-Baltic Sea transition zone.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Perciformes/genetics , Salinity , Sperm Motility , Animals , Atlantic Ocean , Female , Genetic Variation , Genome , Male
13.
BMC Evol Biol ; 20(1): 23, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32039690

ABSTRACT

BACKGROUND: The flat periwinkles, Littorina fabalis and L. obtusata, are two sister species widely distributed throughout the Northern Atlantic shores with high potential to inform us about the process of ecological speciation in the intertidal. However, whether gene flow has occurred during their divergence is still a matter of debate. A comprehensive assessment of the genetic diversity of these species is also lacking and their main glacial refugia and dispersal barriers remain largely unknown. In order to fill these gaps, we sequenced two mitochondrial genes and two nuclear fragments to perform a phylogeographic analysis of flat periwinkles across their distribution range. RESULTS: We identified two main clades largely composed by species-specific haplotypes corresponding to L. obtusata and L. fabalis, with moderate to strong support, respectively. Importantly, a model of divergence with gene flow between the two species (from L. obtusata to L. fabalis) was better supported, both in Iberia and in northern-central Europe. Three mitochondrial clades were detected within L. fabalis and two within L. obtusata, with strong divergence between Iberia and the remaining populations. The largest component of the genetic variance within each species was explained by differences between geographic regions associated with these clades. Our data suggests that overall intraspecific genetic diversity is similar between the two flat periwinkle species and that populations from Iberia tend to be less diverse than populations from northern-central Europe. CONCLUSIONS: The phylogeographic analysis of this sister-species pair supports divergence with gene flow. This system thus provides us with the opportunity to study the contribution of gene flow and natural selection during diversification. The distribution of the different clades suggests the existence of glacial refugia in Iberia and northern-central Europe for both species, with a main phylogeographic break between these regions. Although the genetic diversity results are not fully conclusive, the lower diversity observed in Iberia could reflect marginal conditions at the southern limit of their distribution range during the current interglacial period.


Subject(s)
Ecosystem , Gastropoda/classification , Gastropoda/genetics , Selection, Genetic , Vinca/classification , Vinca/genetics , Animals , Atlantic Ocean , Base Sequence , DNA, Mitochondrial/genetics , Europe , Genes, Mitochondrial , Genetic Variation , Haplotypes , Phylogeny , Phylogeography , Refugium , Species Specificity
14.
J Evol Biol ; 33(3): 342-351, 2020 03.
Article in English | MEDLINE | ID: mdl-31724256

ABSTRACT

Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post-zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post-zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky-Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post-zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females.


Subject(s)
Gene Flow , Snails/genetics , Animals , Clutch Size/genetics , Ecotype , Embryo Loss/genetics , Female , Heterozygote , Sweden
15.
Mol Ecol ; 28(6): 1375-1393, 2019 03.
Article in English | MEDLINE | ID: mdl-30537056

ABSTRACT

Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.


Subject(s)
Adaptation, Physiological/genetics , Chromosome Inversion/genetics , Gastropoda/genetics , Genetic Speciation , Animals , Ecotype , Linkage Disequilibrium/genetics , Selection, Genetic
16.
BMC Ecol ; 19(1): 22, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31164112

ABSTRACT

BACKGROUND: In the brackish Baltic Sea, shedding of adventitious branches is central to asexual recruitment of new thalli in the brown algae Fucus vesiculosus and F. radicans. To test which factors influence the formation of adventitious branches in brackish and in more marine conditions, we sampled 29 Fucus sites in the Baltic Sea (salinity 3-11) and 18 sites from the Danish straits, Kattegat, Skagerrak, and the North Sea (salinity 15-35). Separately for each area, we used structural equation modelling to determine which of eight predictor factors (phosphate, nitrate, chlorophyll-a (as a proxy for turbidity), temperature, salinity, oxygen, grazing pressure, and thallus area) best explained observed numbers of adventitious branches. RESULTS: In more marine waters, high yearly average values of phosphate, salinity and turbidity had positive effects on the formation of adventitious branches. In brackish-waters, however, high numbers of adventitious branches were found in areas with low yearly average values of temperature, salinity and oxygen. Grazing intensity had no significant effect in either of the two study areas, contrasting findings from studies in other areas. In areas with both sexually and asexually reproducing Fucus individuals, clones had on average more adventitious branches than unique genotypes, although there was strong variation among clonal lineages. CONCLUSION: This study is the first to investigate multiple potential drivers of formation of adventitious branches in natural populations of Fucus. Our results suggest that several different factors synergistically and antagonistically affect the growth of adventitious branches in a complex way, and that the same factor (salinity) can have opposing effects in different areas.


Subject(s)
Fucus , Seaweed , Genotype , Salinity
17.
Mol Ecol ; 26(13): 3321-3323, 2017 07.
Article in English | MEDLINE | ID: mdl-28632344

ABSTRACT

What maintains reproductive barriers between closely related species is, of course, of fundamental interest to a closer understanding of the mechanisms that generate new biodiversity. One important dichotomy is to separate barriers evolved from divergent selection over environmental gradients (extrinsic barriers) from barriers caused by incompatibilities between different genetic arrangements that may have evolved in isolation (intrinsic barriers). This dichotomy also reflects an important applied consequence. As the extrinsic barriers are associated with specific environmental contexts, they may be partly or completely erased if the environment changes. In contrast, intrinsic barriers are inert to the environmental context and resistant to environmental changes. From a conservation biology perspective, it may thus be important to be able to separate extrinsic and intrinsic species barriers, but this may in many organisms be a complex matter. In this issue of Molecular Ecology, Montecinos et al. () found a tractable approach that works for species with life cycles that include two reproductive but ecologically similar generations, one haploid and the other diploid. What they demonstrate is that using a life-cycle approach offers a unique possibility to separate between prezygotic and postzygotic barriers. Indeed, in the case of an isomorphic life cycle, there is even a possibility to suggest whether postzygotic barriers are more likely to be intrinsic or extrinsic. In this way, their approach may be useful both to increase our understanding of the basic mechanisms of speciation and to single out when species barriers will better resist environmental changes.


Subject(s)
Hybridization, Genetic , Seaweed , Animals , Ecology , Life Cycle Stages , Reproduction
18.
Mol Ecol ; 26(17): 4452-4466, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28626905

ABSTRACT

Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation.


Subject(s)
Adaptation, Physiological/genetics , Ecosystem , Gadus morhua/genetics , Gene Flow , Animals , Atlantic Ocean , Estuaries , Gene Rearrangement , Genome , Polymorphism, Single Nucleotide , Scandinavian and Nordic Countries
19.
BMC Ecol ; 17(1): 14, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28381278

ABSTRACT

BACKGROUND: Establishing populations in ecologically marginal habitats may require substantial phenotypic changes that come about through phenotypic plasticity, local adaptation, or both. West-Eberhard's "plasticity-first" model suggests that plasticity allows for rapid colonisation of a new environment, followed by directional selection that develops local adaptation. Two predictions from this model are that (i) individuals of the original population have high enough plasticity to survive and reproduce in the marginal environment, and (ii) individuals of the marginal population show evidence of local adaptation. Individuals of the macroalga Fucus vesiculosus from the North Sea colonised the hyposaline (≥2-3‰) Baltic Sea less than 8000 years ago. The colonisation involved a switch from fully sexual to facultative asexual recruitment with release of adventitious branches that grow rhizoids and attach to the substratum. To test the predictions from the plasticity-first model we reciprocally transplanted F. vesiculosus from the original population (ambient salinity 24‰) and from the marginal population inside the Baltic Sea (ambient salinity 4‰). We also transplanted individuals of the Baltic endemic sister species F. radicans from 4 to 24‰. We assessed the degree of plasticity and local adaptation in growth and reproductive traits after 6 months by comparing the performance of individuals in 4 and 24‰. RESULTS: Branches of all individuals survived the 6 months period in both salinities, but grew better in their native salinity. Baltic Sea individuals more frequently developed asexual traits while North Sea individuals initiated formation of receptacles for sexual reproduction. CONCLUSIONS: Marine individuals of F. vesiculosus are highly plastic with respect to salinity and North Sea populations can survive the extreme hyposaline conditions of the Baltic Sea without selective mortality. Plasticity alone would thus allow for an initial establishment of this species inside the postglacial Baltic Sea at salinities where reproduction remains functional. Since establishment, the Baltic Sea populations have evolved adaptations to extreme hyposaline waters and have in addition evolved asexual recruitment that, however, tends to impede local adaptation. Overall, our results support the "plasticity-first" model for the initial colonisation of the Baltic Sea by Fucus vesiculosus.


Subject(s)
Fucus/physiology , Seawater/chemistry , Acclimatization , Ecosystem , Environment , Fucus/growth & development , Salinity
20.
Mol Ecol ; 25(1): 287-305, 2016 01.
Article in English | MEDLINE | ID: mdl-26222268

ABSTRACT

Parallel speciation occurs when selection drives repeated, independent adaptive divergence that reduces gene flow between ecotypes. Classical examples show parallel speciation originating from shared genomic variation, but this does not seem to be the case in the rough periwinkle (Littorina saxatilis) that has evolved considerable phenotypic diversity across Europe, including several distinct ecotypes. Small 'wave' ecotype snails inhabit exposed rocks and experience strong wave action, while thick-shelled, 'crab' ecotype snails are larger and experience crab predation on less exposed shores. Crab and wave ecotypes appear to have arisen in parallel, and recent evidence suggests only marginal sharing of molecular variation linked to evolution of similar ecotypes in different parts of Europe. However, the extent of genomic sharing is expected to increase with gene flow and more recent common ancestry. To test this, we used de novo RAD-sequencing to quantify the extent of shared genomic divergence associated with phenotypic similarities amongst ecotype pairs on three close islands (<10 km distance) connected by weak gene flow (Nm ~ 0.03) and with recent common ancestry (<10 000 years). After accounting for technical issues, including a large proportion of null alleles due to a large effective population size, we found ~8-28% of positive outliers were shared between two islands and ~2-9% were shared amongst all three islands. This low level of sharing suggests that parallel phenotypic divergence in this system is not matched by shared genomic divergence despite a high probability of gene flow and standing genetic variation.


Subject(s)
Ecotype , Gene Flow , Genetic Speciation , Genetics, Population , Snails/genetics , Alleles , Animals , Contig Mapping , Genetic Loci , Haplotypes , Islands , Linkage Disequilibrium , Phenotype , Selection, Genetic , Sequence Analysis, DNA , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL