Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Hum Mol Genet ; 32(21): 3029-3039, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37070754

ABSTRACT

Recessive mutations in the DNAJB2 gene, encoding the J-domain co-chaperones DNAJB2a and DNAJB2b, have previously been reported as the genetic cause of progressive peripheral neuropathies, rarely involving pyramidal signs, parkinsonism and myopathy. We describe here a family with the first dominantly acting DNAJB2 mutation resulting in a late-onset neuromyopathy phenotype. The c.832 T > G p.(*278Glyext*83) mutation abolishes the stop codon of the DNAJB2a isoform resulting in a C-terminal extension of the protein, with no direct effect predicted on the DNAJB2b isoform of the protein. Analysis of the muscle biopsy showed reduction of both protein isoforms. In functional studies, the mutant protein mislocalized to the endoplasmic reticulum due to a transmembrane helix in the C-terminal extension. The mutant protein underwent rapid proteasomal degradation and also increased the turnover of co-expressed wild-type DNAJB2a, potentially explaining the reduced protein amount in the patient muscle tissue. In line with this dominant negative effect, both wild-type and mutant DNAJB2a were shown to form polydisperse oligomers.


Subject(s)
Neuromuscular Diseases , Peripheral Nervous System Diseases , Humans , Molecular Chaperones/genetics , Mutation , Protein Isoforms/genetics , Mutant Proteins/genetics , HSP40 Heat-Shock Proteins/genetics
2.
J Med Genet ; 61(4): 369-377, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37935568

ABSTRACT

BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.


Subject(s)
Distal Myopathies , Humans , Connectin/genetics , Distal Myopathies/genetics , DNA Copy Number Variations/genetics , Muscle, Skeletal/pathology , Mutation/genetics , Phenotype
3.
Brain ; 145(11): 3985-3998, 2022 11 21.
Article in English | MEDLINE | ID: mdl-34957489

ABSTRACT

Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified 10 bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in sarcoplasmic reticulum function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in sarcoplasmic reticulum Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the sarcoplasmic reticulum and/or a decrease in Ca2+ sarcoplasmic reticulum storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.


Subject(s)
Calcium , Rhabdomyolysis , Adolescent , Humans , Rhabdomyolysis/genetics , Rhabdomyolysis/diagnosis , Rhabdomyolysis/pathology , Myalgia/genetics , Sarcoplasmic Reticulum/metabolism , Loss of Heterozygosity , Protein Serine-Threonine Kinases , Rho Guanine Nucleotide Exchange Factors/genetics
4.
Hum Mutat ; 43(12): 1745-1756, 2022 12.
Article in English | MEDLINE | ID: mdl-36116040

ABSTRACT

ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.


Subject(s)
Actinin , Heart , Humans , Actinin/genetics , Actinin/chemistry , Mutation , Muscle, Skeletal/metabolism , Mutation, Missense
5.
Acta Neuropathol ; 142(2): 375-393, 2021 08.
Article in English | MEDLINE | ID: mdl-33974137

ABSTRACT

Using deep phenotyping and high-throughput sequencing, we have identified a novel type of distal myopathy caused by mutations in the Small muscle protein X-linked (SMPX) gene. Four different missense mutations were identified in ten patients from nine families in five different countries, suggesting that this disease could be prevalent in other populations as well. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher. In our study all patients presented with highly similar clinical features: adult-onset, usually distal more than proximal limb muscle weakness, slowly progressing over decades with preserved walking. Lower limb muscle imaging showed a characteristic pattern of muscle involvement and fatty degeneration. Histopathological and electron microscopic analysis of patient muscle biopsies revealed myopathic findings with rimmed vacuoles and the presence of sarcoplasmic inclusions, some with amyloid-like characteristics. In silico predictions and subsequent cell culture studies showed that the missense mutations increase aggregation propensity of the SMPX protein. In cell culture studies, overexpressed SMPX localized to stress granules and slowed down their clearance.


Subject(s)
Distal Myopathies/pathology , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Mutation, Missense/genetics , Adult , Distal Myopathies/genetics , Humans , Inclusion Bodies/pathology , Middle Aged , Muscle Weakness/pathology , Pedigree , Stress Granules
6.
Hum Mutat ; 41(2): 403-411, 2020 02.
Article in English | MEDLINE | ID: mdl-31660661

ABSTRACT

We present eight families with arthrogryposis multiplex congenita and myopathy bearing a TTN intron 213 extended splice-site variant (NM_001267550.1:c.39974-11T>G), inherited in trans with a second pathogenic TTN variant. Muscle-derived RNA studies of three individuals confirmed mis-splicing induced by the c.39974-11T>G variant; in-frame exon 214 skipping or use of a cryptic 3' splice-site effecting a frameshift. Confounding interpretation of pathogenicity is the absence of exons 213-217 within the described skeletal muscle TTN N2A isoform. However, RNA-sequencing from 365 adult human gastrocnemius samples revealed that 56% specimens predominantly include exons 213-217 in TTN transcripts (inclusion rate ≥66%). Further, RNA-sequencing of five fetal muscle samples confirmed that 4/5 specimens predominantly include exons 213-217 (fifth sample inclusion rate 57%). Contractures improved significantly with age for four individuals, which may be linked to decreased expression of pathogenic fetal transcripts. Our study extends emerging evidence supporting a vital developmental role for TTN isoforms containing metatranscript-only exons.


Subject(s)
Alternative Splicing , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Connectin/genetics , Genes, Recessive , Genetic Predisposition to Disease , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Child , Child, Preschool , Female , Genetic Association Studies , Humans , Infant , Male , Mutation , Pedigree , Phenotype , Radiography
7.
Genet Med ; 22(12): 2029-2040, 2020 12.
Article in English | MEDLINE | ID: mdl-32778822

ABSTRACT

PURPOSE: High throughput sequencing analysis has facilitated the rapid analysis of the entire titin (TTN) coding sequence. This has resulted in the identification of a growing number of recessive titinopathy patients. The aim of this study was to (1) characterize the causative genetic variants and clinical features of the largest cohort of recessive titinopathy patients reported to date and (2) to evaluate genotype-phenotype correlations in this cohort. METHODS: We analyzed clinical and genetic data in a cohort of patients with biallelic pathogenic or likely pathogenic TTN variants. The cohort included both previously reported cases (100 patients from 81 unrelated families) and unreported cases (23 patients from 20 unrelated families). RESULTS: Overall, 132 causative variants were identified in cohort members. More than half of the cases had hypotonia at birth or muscle weakness and a delayed motor development within the first 12 months of life (congenital myopathy) with causative variants located along the entire gene. The remaining patients had a distal or proximal phenotype and a childhood or later (noncongenital) onset. All noncongenital cases had at least one pathogenic variant in one of the final three TTN exons (362-364). CONCLUSION: Our findings suggest a novel association between the location of nonsense variants and the clinical severity of the disease.


Subject(s)
High-Throughput Nucleotide Sequencing , Muscle Hypotonia , Child , Connectin/genetics , Genetic Association Studies , Humans , Mutation , Phenotype
8.
Epilepsia Open ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785332

ABSTRACT

OBJECTIVE: Infantile seizures cause great concern for both doctors and parents. In addition to modern neuroimaging and genetics, clinical tools helpful in predicting the course of the disease are needed. We prospectively studied the incidence, electroclinical characteristics and etiologies of epilepsy syndromes with onset before the age of 12 months and looked for prognostic determinants of outcome by age 24 months. METHODS: From February 2017 through May 2019, we recruited all eligible infants diagnosed with epilepsy at our unit. Data on electroclinical studies, genetic investigations and drug response were gathered prospectively. The infants were given a structured neurological examination (Hammersmith Infantile Neurological examination [HINE] and Griffiths scales) at predetermined intervals until age 24 months at which age neurocognitive evaluation with Bayley scales was performed. RESULTS: Included were 60 infants (27 female). The mean onset age of epilepsy was 5.3 (±2.5 standard deviation) months. The incidence of epilepsy in the population-based cohort was 131 (95% confidence interval 99-172)/100 000. Epilepsy syndrome was identified in 80% and etiology in 58% of infants. Self-limited infantile epilepsy was the second most common syndrome (incidence 18/100 000) after infantile epileptic spasms syndrome. PRRT2 was the most common monogenic cause. At age 24 months, 37% of the infants had drug-resistant epilepsy (DRE) and half had a global developmental delay (GDD). Abnormal first HINE was the strongest predictor of GDD, followed by DRE and identified etiology. DRE was associated with structural etiology and GDD. Those with normal first HINE and good response to treatment had favorable outcomes, irrespective of the identified etiology. SIGNIFICANCE: Our results support a high incidence of self-limited epilepsy in infancy and PRRT2 as the genetic cause in the first year of life. Notwithstanding the advances in etiological discovery, we want to highlight the importance of clinical evaluation as standardized neurological examination with HINE proved a valuable tool in prognostication. PLAIN LANGUAGE SUMMARY: One in every 700-800 babies develop epilepsy within the first year after birth. Our study identified an epilepsy syndrome in 80% and the cause of epilepsy in 60% of the participants. By age 2 years, over one-third of the children still experienced seizures, and almost half faced significant developmental delay. Structural brain abnormalities increased the likelihood of difficult epilepsy and developmental challenges. Babies whose epilepsy was caused by a gene defect varied widely in development and response to medications. Babies with normal neurological examination at first visit, especially if their seizures stopped quickly, had favorable development.

9.
Commun Biol ; 7(1): 438, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600180

ABSTRACT

Myopathy refers to a large group of heterogeneous, rare muscle diseases. Bulk RNA-sequencing has been utilized for the diagnosis and research of these diseases for many years. However, the existing valuable sequencing data often lack integration and clinical interpretation. In this study, we integrated bulk RNA-sequencing data from 1221 human skeletal muscles (292 with myopathies, 929 controls) from both databases and our local samples. By applying a method similar to single-cell analysis, we revealed a general spectrum of muscle diseases, ranging from healthy to mild disease, moderate muscle wasting, and severe muscle disease. This spectrum was further partly validated in three specific myopathies (97 muscles) through clinical features including trinucleotide repeat expansion, magnetic resonance imaging fat fraction, pathology, and clinical severity scores. This spectrum helped us identify 234 genuinely healthy muscles as unprecedented controls, providing a new perspective for deciphering the hallmark genes and pathways among different myopathies. The newly identified featured genes of general myopathy, inclusion body myositis, and titinopathy were highly expressed in our local muscles, as validated by quantitative polymerase chain reaction.


Subject(s)
Muscle, Skeletal , Muscular Diseases , Humans , Muscle, Skeletal/metabolism , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscular Diseases/metabolism , RNA/metabolism
10.
medRxiv ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38370827

ABSTRACT

Background: Weakness of facial, ocular, and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca 2+ homeostasis can contribute to disease pathology. Methods: We analysed exome and genome sequencing data from three unrelated individuals with congenital myopathy characterised by striking facial, ocular, and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-seq data of one proband and performed gene expression outlier analysis in 129 samples. Results: The three probands had remarkably similar clinical presentation with prominent facial, ocular, and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but most prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatiguability. While muscle biopsy on light microscopy did not show any obvious morphological abnormalities, ultrastructural analysis showed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum. DNA sequencing identified three unique homozygous loss of function variants in JPH1 , encoding junctophilin-1 in the three families; a stop-gain (c.354C>A; p.Tyr118*) and two frameshift (c.373del p.Asp125Thrfs*30 and c.1738del; p.Leu580Trpfs*16) variants. Muscle RNA-seq showed strong downregulation of JPH1 in the F3 proband. Conclusions: Junctophilin-1 is critical to the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of JPH1 results in a congenital myopathy with prominent facial, bulbar and ocular involvement. Key message: This study identified novel homozygous loss-of-function variants in the JPH1 gene, linking them to a unique form of congenital myopathy characterised by severe facial and ocular symptoms. Our research sheds light on the critical impact on junctophilin-1 function in skeletal muscle triad junction formation and the consequences of its disruption resulting in a myopathic phenotype. What is already known on this topic: Previous studies have shown that pathogenic variants in genes encoding triad proteins lead to various myopathic phenotypes, with clinical presentations often involving muscle weakness and myopathic facies. The triad structure is essential for excitation-contraction (EC) coupling and calcium homeostasis and is a key element in muscle physiology. What this study adds and how this study might affect research practice or policy: This study establishes that homozygous loss-of-function mutations in JPH1 cause a congenital myopathy predominantly affecting facial and ocular muscles. This study also provides clinical insights that may aid the clinicians in diagnosing similar genetically unresolved cases.

11.
Sci Rep ; 14(1): 4306, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383731

ABSTRACT

Rare or novel missense variants in large genes such as TTN and NEB are frequent in the general population, which hampers the interpretation of putative disease-causing biallelic variants in patients with sporadic neuromuscular disorders. Often, when the first initial genetic analysis is performed, the reconstructed haplotype, i.e. phasing information of the variants is missing. Segregation analysis increases the diagnostic turnaround time and is not always possible if samples from family members are lacking. To overcome this difficulty, we investigated how well the linked-read technology succeeded to phase variants in these large genes, and whether it improved the identification of structural variants. Linked-read sequencing data of nemaline myopathy, distal myopathy, and proximal myopathy patients were analyzed for phasing, single nucleotide variants, and structural variants. Variant phasing was successful in the large muscle genes studied. The longest continuous phase blocks were gained using high-quality DNA samples with long DNA fragments. Homozygosity increased the number of phase blocks, especially in exome sequencing samples lacking intronic variation. In our cohort, linked-read sequencing added more information about the structural variation but did not lead to a molecular genetic diagnosis. The linked-read technology can support the clinical diagnosis of neuromuscular and other genetic disorders.


Subject(s)
Muscular Diseases , Myopathies, Nemaline , Neuromuscular Diseases , Humans , Haplotypes/genetics , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics , DNA , High-Throughput Nucleotide Sequencing
12.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38765987

ABSTRACT

Introduction: Limb girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous autosomal conditions with some degree of phenotypic homogeneity. LGMD is defined as having onset >2 years of age with progressive proximal weakness, elevated serum creatine kinase levels and dystrophic features on muscle biopsy. Advances in massively parallel sequencing have led to a surge in genes linked to LGMD. Methods: The ClinGen Muscular Dystrophies and Myopathies gene curation expert panel (MDM GCEP, formerly Limb Girdle Muscular Dystrophy GCEP) convened to evaluate the strength of evidence supporting gene-disease relationships (GDR) using the ClinGen gene-disease clinical validity framework to evaluate 31 genes implicated in LGMD. Results: The GDR was exclusively LGMD for 17 genes, whereas an additional 14 genes were related to a broader phenotype encompassing congenital weakness. Four genes (CAPN3, COL6A1, COL6A2, COL6A3) were split into two separate disease entities, based on each displaying both dominant and recessive inheritance patterns, resulting in curation of 35 GDRs. Of these, 30 (86%) were classified as Definitive, 4 (11%) as Moderate and 1 (3%) as Limited. Two genes, POMGNT1 and DAG1, though definitively related to myopathy, currently have insufficient evidence to support a relationship specifically with LGMD. Conclusions: The expert-reviewed assertions on the clinical validity of genes implicated in LGMDs form an invaluable resource for clinicians and molecular geneticists. We encourage the global neuromuscular community to publish case-level data that help clarify disputed or novel LGMD associations.

13.
J Neuromuscul Dis ; 10(5): 977-984, 2023.
Article in English | MEDLINE | ID: mdl-37393515

ABSTRACT

BACKGROUND: Pathogenic variants in the TPM3 gene, encoding slow skeletal muscle α-tropomyosin account for less than 5% of nemaline myopathy cases. Dominantly inherited or de novo missense variants in TPM3 are more common than recessive loss-of-function variants. The recessive variants reported to date seem to affect either the 5' or the 3' end of the skeletal muscle-specific TPM3 transcript. OBJECTIVES: The aim of the study was to identify the disease-causing gene and variants in a Finnish patient with an unusual form of nemaline myopathy. METHODS: The genetic analyses included Sanger sequencing, whole-exome sequencing, targeted array-CGH, and linked-read whole genome sequencing. RNA sequencing was done on total RNA extracted from cultured myoblasts and myotubes of the patient and controls. TPM3 protein expression was assessed by Western blot analysis. The diagnostic muscle biopsy was analyzed by routine histopathological methods. RESULTS: The patient had poor head control and failure to thrive, but no hypomimia, and his upper limbs were clearly weaker than his lower limbs, features which in combination with the histopathology suggested TPM3-caused nemaline myopathy. Muscle histopathology showed increased fiber size variation and numerous nemaline bodies predominantly in small type 1 fibers. The patient was found to be compound heterozygous for two splice-site variants in intron 1a of TPM3: NM_152263.4:c.117+2_5delTAGG, deleting the donor splice site of intron 1a, and NM_152263.4:c.117 + 164 C>T, which activates an acceptor splice site preceding a non-coding exon in intron 1a. RNA sequencing revealed inclusion of intron 1a and the non-coding exon in the transcripts, resulting in early premature stop codons. Western blot using patient myoblasts revealed markedly reduced levels of the TPM3 protein. CONCLUSIONS: Novel biallelic splice-site variants were shown to markedly reduce TPM3 protein expression. The effects of the variants on splicing were readily revealed by RNA sequencing, demonstrating the power of the method.


Subject(s)
Myopathies, Nemaline , Humans , Myopathies, Nemaline/genetics , Exome Sequencing , Tropomyosin/genetics , Tropomyosin/metabolism , Muscle, Skeletal/pathology , Sequence Analysis, RNA
14.
J Neurol ; 269(8): 4161-4173, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35237874

ABSTRACT

OBJECTIVE: Inclusion body myositis (IBM) has an unclear molecular etiology exhibiting both characteristic inflammatory T-cell activity and rimmed-vacuolar degeneration of muscle fibers. Using in-depth gene expression and splicing studies, we aimed at understanding the different components of the molecular pathomechanisms in IBM. METHODS: We performed RNA-seq on RNA extracted from skeletal muscle biopsies of clinically and histopathologically defined IBM (n = 24), tibial muscular dystrophy (n = 6), and histopathologically normal group (n = 9). In a comprehensive transcriptomics analysis, we analyzed the differential gene expression, differential splicing and exon usage, downstream pathway analysis, and the interplay between coding and non-coding RNAs (micro RNAs and long non-coding RNAs). RESULTS: We observe dysregulation of genes involved in calcium homeostasis, particularly affecting the T-cell activity and regulation, causing disturbed Ca2+-induced apoptotic pathways of T cells in IBM muscles. Additionally, LCK/p56, which is an essential gene in regulating the fate of T-cell apoptosis, shows increased expression and altered splicing usage in IBM muscles. INTERPRETATION: Our analysis provides a novel understanding of the molecular mechanisms in IBM by showing a detailed dysregulation of genes involved in calcium homeostasis and its effect on T-cell functioning in IBM muscles. Loss of T-cell regulation is hypothesized to be involved in the consistent observation of no response to immune therapies in IBM patients. Our results show that loss of apoptotic control of cytotoxic T cells could indeed be one component of their abnormal cytolytic activity in IBM muscles.


Subject(s)
Myositis, Inclusion Body , Myositis , Apoptosis/genetics , Calcium/metabolism , Homeostasis/genetics , Humans , Muscle, Skeletal/pathology , Myositis, Inclusion Body/genetics , T-Lymphocytes/pathology , Transcriptome
15.
Ann Clin Transl Neurol ; 9(10): 1660-1667, 2022 10.
Article in English | MEDLINE | ID: mdl-36134701

ABSTRACT

OBJECTIVE: Mutations in the prion-like domain of RNA binding proteins cause dysfunctional stress responses and associated aggregate pathology in patients with neurogenic and myopathic phenotypes. Recently, mutations in ANXA11 have been reported in patients with amyotrophic lateral sclerosis and multisystem proteinopathy. Here we studied families with an autosomal dominant muscle disease caused by ANXA11:c.118G > T;p.D40Y. METHODS: We performed deep phenotyping and exome sequencing of patients from four large Greek families, including seven affected individuals with progressive muscle disease but no family history of multi-organ involvement or ALS. RESULTS: In our study, all patients presented with an autosomal dominant muscular dystrophy without any Paget disease of bone nor signs of frontotemporal dementia or Parkinson's disease. Histopathological analysis showed rimmed vacuoles with annexin A11 accumulations. Electron microscopy analysis showed myofibrillar abnormalities with disorganization of the sarcomeric structure and Z-disc dissolution, and subsarcolemmal autophagic material with myeloid formations. Molecular genetic analysis revealed ANXA11:c.118G > T;p.D40Y segregating with the phenotype. INTERPRETATION: Although the pathogenic mechanisms associated with p.D40Y mutation in the prion-like domain of Annexin A11 need to be further clarified, our study provides robust and clear genetic evidence to support the expansion of the phenotypic spectrum of ANXA11.


Subject(s)
Frontotemporal Dementia , Muscular Diseases , Muscular Dystrophies , Prions , Annexins/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Greece , Humans , Muscular Diseases/genetics
16.
Neurol Genet ; 7(6): e632, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34722876

ABSTRACT

BACKGROUND AND OBJECTIVES: To determine the genetic cause of the disease in the previously reported family with adult-onset autosomal dominant distal myopathy (myopathy, distal, 3; MPD3). METHODS: Continued clinical evaluation including muscle MRI and muscle pathology. A linkage analysis with single nucleotide polymorphism arrays and genome sequencing were used to identify the genetic defect, which was verified by Sanger sequencing. RNA sequencing was used to investigate the transcriptional effects of the identified genetic defect. RESULTS: Small hand muscles (intrinsic, thenar, and hypothenar) were first involved with spread to the lower legs and later proximal muscles. Dystrophic changes with rimmed vacuoles and cytoplasmic inclusions were observed in muscle biopsies at advanced stage. A single nucleotide polymorphism array confirmed the previous microsatellite-based linkage to 8p22-q11 and 12q13-q22. Genome sequencing of three affected family members combined with structural variant calling revealed a small heterozygous deletion of 160 base pairs spanning the second last exon 10 of the heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) gene, which is in the linked region on chromosome 12. Segregation of the mutation with the disease was confirmed by Sanger sequencing. RNA sequencing showed that the mutant allele produces a shorter mutant mRNA transcript compared with the wild-type allele. Immunofluorescence studies on muscle biopsies revealed small p62 and larger TDP-43 inclusions. DISCUSSION: A small exon 10 deletion in the gene HNRNPA1 was identified as the cause of MPD3 in this family. The new HNRNPA1-related phenotype, upper limb presenting distal myopathy, was thus confirmed, and the family displays the complexities of gene identification.

17.
Neurol Genet ; 7(5): e619, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34386585

ABSTRACT

BACKGROUND AND OBJECTIVES: To clinically, genetically, and histopathologically characterize patients presenting with an unusual combination of distal myopathy and facial weakness, without involvement of upper limb or shoulder girdle muscles. METHODS: Two families with a novel form of actininopathy were identified. Patients had been followed up over 10 years. Their molecular genetic diagnosis was not clear after extensive investigations, including analysis of candidate genes and FSHD1-related D4Z4 repeats. RESULTS: Patients shared a similar clinical phenotype and a common pattern of muscle involvement. They presented with a very slowly progressive myopathy involving anterior lower leg and facial muscles. Muscle MRI finding showed complete fat replacement of anterolateral compartment muscles of the lower legs with variable involvement of soleus and gastrocnemius but sparing thigh muscles. Muscle biopsy showed internalized nuclei, myofibrillar disorganization, and rimmed vacuoles. High-throughput sequencing identified in each proband a heterozygous single nucleotide deletion (c.2558del and c.2567del) in the last exon of the ACTN2 gene. The deletions are predicted to lead to a novel but unstructured slightly extended C-terminal amino acid sequence. DISCUSSION: Our findings indicate an unusual form of actininopathy with specific molecular and clinical features. Actininopathy should be considered in the differential diagnosis of distal myopathy combined with facial weakness.

18.
J Neuromuscul Dis ; 7(3): 203-216, 2020.
Article in English | MEDLINE | ID: mdl-32176652

ABSTRACT

Human genes have a variable length. Those having a coding sequence of extraordinary length and a high number of exons were almost impossible to sequence using the traditional Sanger-based gene-by-gene approach. High-throughput sequencing has partly overcome the size-related technical issues, enabling a straightforward, rapid and relatively inexpensive analysis of large genes.Several large genes (e.g. TTN, NEB, RYR1, DMD) are recognized as disease-causing in patients with skeletal muscle diseases. However, because of their sheer size, the clinical interpretation of variants in these genes is probably the most challenging aspect of the high-throughput genetic investigation in the field of skeletal muscle diseases.The main aim of this review is to discuss the technical and interpretative issues related to the diagnostic investigation of large genes and to reflect upon the current state of the art and the future advancements in the field.


Subject(s)
Genetic Testing , Musculoskeletal Diseases/diagnosis , Musculoskeletal Diseases/genetics , Humans
19.
Acta Myol ; 39(4): 245-265, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33458580

ABSTRACT

Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.


Subject(s)
Distal Myopathies/diagnosis , Age of Onset , Distal Myopathies/genetics , Humans
20.
J Neuromuscul Dis ; 7(4): 477-481, 2020.
Article in English | MEDLINE | ID: mdl-32597815

ABSTRACT

Although DNA-sequencing is the most effective procedure to achieve a molecular diagnosis in genetic diseases, complementary RNA analyses are often required.Reverse-Transcription polymerase chain reaction (RT-PCR) is still a valuable option when the clinical phenotype and/or available DNA-test results address the diagnosis toward a gene of interest or when the splicing effect of a single variant needs to be assessed.We use Single-Molecule Real-Time sequencing to detect and characterize splicing defects and single nucleotide variants in well-known disease genes (DMD, NF1, TTN). After proper optimization, the procedure could be used in the diagnostic setting, simplifying the workflow of cDNA analysis.


Subject(s)
DNA, Complementary , Genetic Testing/methods , Polymorphism, Single Nucleotide , RNA Splicing , Sequence Analysis, DNA/methods , Connectin/genetics , Dystrophin/genetics , Humans , Neurofibromin 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL