Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Eur J Immunol ; 53(6): e2250266, 2023 06.
Article in English | MEDLINE | ID: mdl-36932726

ABSTRACT

Tauopathies, which include frontotemporal dementia, Alzheimer's disease, and chronic traumatic encephalopathy, are a class of neurological disorders resulting from pathogenic tau aggregates. These aggregates disrupt neuronal health and function leading to the cognitive and physical decline of tauopathy patients. Genome-wide association studies and clinical evidence have brought to light the large role of the immune system in inducing and driving tau-mediated pathology. More specifically, innate immune genes are found to harbor tauopathy risk alleles, and innate immune pathways are upregulated throughout the course of disease. Experimental evidence has expanded on these findings by describing pivotal roles for the innate immune system in the regulation of tau kinases and tau aggregates. In this review, we summarize the literature implicating innate immune pathways as drivers of tauopathy.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , tau Proteins/genetics , tau Proteins/metabolism , Genome-Wide Association Study , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Immunity, Innate , Brain/pathology
2.
Alzheimers Dement ; 19(11): 4908-4921, 2023 11.
Article in English | MEDLINE | ID: mdl-37061460

ABSTRACT

INTRODUCTION: Mutations in INPP5D, which encodes for the SH2-domain-containing inositol phosphatase SHIP-1, have recently been linked to an increased risk of developing late-onset Alzheimer's disease. While INPP5D expression is almost exclusively restricted to microglia in the brain, little is known regarding how SHIP-1 affects neurobiology or neurodegenerative disease pathogenesis. METHODS: We generated and investigated 5xFAD Inpp5dfl/fl Cx3cr1Ert2Cre mice to ascertain the function of microglial SHIP-1 signaling in response to amyloid beta (Aß)-mediated pathology. RESULTS: SHIP-1 deletion in microglia led to substantially enhanced recruitment of microglia to Aß plaques, altered microglial gene expression, and marked improvements in neuronal health. Further, SHIP-1 loss enhanced microglial plaque containment and Aß engulfment when compared to microglia from Cre-negative 5xFAD Inpp5dfl/fl littermate controls. DISCUSSION: These results define SHIP-1 as a pivotal regulator of microglial responses during Aß-driven neurological disease and suggest that targeting SHIP-1 may offer a promising strategy to treat Alzheimer's disease. HIGHLIGHTS: Inpp5d deficiency in microglia increases plaque-associated microglia numbers. Loss of Inpp5d induces activation and phagocytosis transcriptional pathways. Plaque encapsulation and engulfment by microglia are enhanced with Inpp5d deletion. Genetic ablation of Inpp5d protects against plaque-induced neuronal dystrophy.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Microglia/metabolism , Mice, Transgenic , Neurodegenerative Diseases/pathology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Risk Factors , Plaque, Amyloid/pathology , Disease Models, Animal
3.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693558

ABSTRACT

Using a mouse model of ischemic stroke, this study characterizes stroke-induced lymphangiogenesis at the cribriform plate (CP). While blocking CP lymphangiogenesis with a VEGFR-3 inhibitor improves stroke outcome, administration of VEGF-C induced larger brain infarcts. Abstract: Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dural meningeal lymphatics. However, the pathological roles of these lymphatic vessels surrounding the CNS during stroke are not well understood. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we show that stroke induces lymphangiogenesis near the cribriform plate. Interestingly, lymphangiogenesis is restricted to lymphatic vessels at the cribriform plate and downstream cervical lymph nodes, without affecting the conserved network of lymphatic vessels in the dura. Cribriform plate lymphangiogenesis peaks at day 7 and regresses by day 14 following tMCAO and is regulated by VEGF-C/VEGFR-3. These newly developed lymphangiogenic vessels transport CSF and immune cells to the cervical lymph nodes. Inhibition of VEGF-C/VEGFR-3 signaling using a blocker of VEGFR-3 prevented lymphangiogenesis and led to improved stroke outcomes at earlier time points but had no effects at later time points following stroke. Administration of VEGF-C after tMCAO did not further increase post-stroke lymphangiogenesis, but instead induced larger brain infarcts. The differential roles for VEGFR-3 inhibition and VEGF-C in regulating stroke pathology call into question recent suggestions to use VEGF-C therapeutically for stroke.

4.
JCI Insight ; 6(19)2021 10 08.
Article in English | MEDLINE | ID: mdl-34428178

ABSTRACT

Repetitive mild traumatic brain injuries (mTBI) disrupt CNS barriers, the erosion of which has been linked to long-term neurodegenerative and psychiatric conditions. Although much attention has been devoted to CNS vasculature following mTBI, little is known about the glia limitans superficialis - a barrier of surface-associated astrocytes that helps protect the CNS parenchyma and maintain homeostasis. Here, we identify the glia limitans superficialis as a crucial barrier surface whose breakdown after acute repeat mTBI facilitates increased cell death and recruitment of peripheral myelomonocytic cells. Using intravital microscopy, we show that brain-resident microglia fortify this structure after a single mTBI, yet they fail to do so following secondary injury, which triggers massive recruitment of myelomonocytic cells from the periphery that contribute to further destruction of the glia limitans superficialis but not cortical cell death. We demonstrate, instead, that reactive oxygen species (ROS) generated in response to repetitive head injury are largely responsible for enhanced cortical cell death, and therapeutic administration of the antioxidant glutathione markedly reduces this cell death, preserves the glia limitans, and prevents myelomonocytic cells from entering the brain parenchyma. Collectively, our findings underscore the importance of preserving the glia limitans superficialis after brain injury and offer a therapeutic means to protect this structure and the underlying cortex.


Subject(s)
Astrocytes/metabolism , Brain Injuries, Traumatic/metabolism , Brain/metabolism , Cell Death/physiology , Cerebral Cortex/metabolism , Oxidative Stress/physiology , Animals , Antioxidants/pharmacology , Astrocytes/drug effects , Astrocytes/pathology , Brain/drug effects , Brain/pathology , Brain Injuries, Traumatic/pathology , Cell Death/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Disease Models, Animal , Glutathione/pharmacology , Inflammation/metabolism , Mice , Monocytes/drug effects , Myeloid Cells/drug effects , Neuroglia/drug effects , Neuroglia/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Recurrence
5.
J Phys Chem A ; 113(51): 14131-40, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-19924886

ABSTRACT

Molecular beam scattering experiments are used to investigate collisions and reactions of HCl with deuterated sulfuric acid containing 0-0.2 M pentanoic acid (PA) and mixtures of PA and hexanol. Surface tension measurements at 296 K indicate that PA segregates to the surface of the acid, reaching coverages of 58% and 52% of maximum packing on 60 and 68 wt % D(2)SO(4), respectively. We find that these films increase HCl entry into the acid at low PA surface coverage at 213 K. This enhancement is attributed to the dissociation of HCl molecules that come into contact with surface COOH groups and protonate them. At higher coverages, the PA film becomes more compact and impedes HCl uptake. Comparisons with films of pure hexanol and pentanoic acid/hexanol mixtures indicate that surface OH groups are more effective than COOH groups in catalyzing HCl entry. They also suggest that the PA films consist of patchy regions of tightly packed molecules, which are pushed away from the surface upon addition of the more surface active hexanol. HCl entry into the pure and mixed films can be analyzed quantitatively using a two-step model in which adsorbed HCl molecules penetrate between the alkyl chains and then dissociate at the surfactant-acid interface.

6.
Science ; 350(6257): 189-92, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26338796

ABSTRACT

Identification and characterization of catalytic active sites are the prerequisites for an atomic-level understanding of the catalytic mechanism and rational design of high-performance heterogeneous catalysts. Indirect evidence in recent reports suggests that platinum (Pt) single atoms are exceptionally active catalytic sites. We demonstrate that infrared spectroscopy can be a fast and convenient characterization method with which to directly distinguish and quantify Pt single atoms from nanoparticles. In addition, we directly observe that only Pt nanoparticles show activity for carbon monoxide (CO) oxidation and water-gas shift at low temperatures, whereas Pt single atoms behave as spectators. The lack of catalytic activity of Pt single atoms can be partly attributed to the strong binding of CO molecules.

7.
J Phys Chem Lett ; 5(21): 3914-8, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-26278769

ABSTRACT

Atomic and molecular solutes evaporate and dissolve by traversing an atomically thin boundary separating liquid and gas. Most solutes spend only short times in this interfacial region, making them difficult to observe. Experiments that monitor the velocities of evaporating species, however, can capture their final interactions with surface solvent molecules. We find that polarizable gases such as N2 and Ar evaporate from protic and hydrocarbon liquids with Maxwell-Boltzmann speed distributions. Surprisingly, the weakly interacting helium atom emerges from these liquids at high kinetic energies, exceeding the expected energy of evaporation from salty water by 70%. This super-Maxwellian evaporation implies in reverse that He atoms preferentially dissolve when they strike the surface at high energies, as if ballistically penetrating into the solvent. The evaporation energies increase with solvent surface tension, suggesting that He atoms require extra kinetic energy to navigate increasingly tortuous paths between surface molecules.

8.
J Phys Chem B ; 118(28): 7993-8001, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24620717

ABSTRACT

Gas-liquid scattering experiments are used to determine how a soluble, branched surfactant (2-ethylbutanol) controls the entry of gaseous HCl molecules into 60 and 68 wt % D2SO4 at 213 K. Short-chain alcohols spontaneously segregate to the surfaces of these sulfuric acid solutions, which are representative of aerosol droplets in the lower stratosphere. We find that 2-ethylbutanol enhances HCl entry at low surface coverages, most likely because it provides extra interfacial OH groups that aid HCl dissociation. This enhancement disappears at higher coverages as the alkyl chains crowd each other and block access to the acid. The branched alcohol impedes HCl entry more effectively than its unbranched isomer 1-hexanol, implying that the larger 2-ethybutanol footprint on the surface blocks more HCl molecules from reaching the alcohol-acid interface. This behavior contrasts sharply with gas transport through long-chain monolayers, where branching introduces gaps that allow more facile passage. The experiments suggest that short-chain surfactants with extended footprints may impede transport more effectively than their unbranched isomers.

9.
Article in English | MEDLINE | ID: mdl-25250242

ABSTRACT

Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL 933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 EDL 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters.


Subject(s)
Escherichia coli O157 , Escherichia coli , Microbial Viability , Soil Microbiology , Arizona , Bacterial Load , California , DNA, Bacterial , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli O157/classification , Escherichia coli O157/genetics , Food Microbiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL