Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Biotechnol ; 34(11): 1168-1179, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27748754

ABSTRACT

The ability to generate hematopoietic stem cells from human pluripotent cells would enable many biomedical applications. We find that hematopoietic CD34+ cells in spin embryoid bodies derived from human embryonic stem cells (hESCs) lack HOXA expression compared with repopulation-competent human cord blood CD34+ cells, indicating incorrect mesoderm patterning. Using reporter hESC lines to track the endothelial (SOX17) to hematopoietic (RUNX1C) transition that occurs in development, we show that simultaneous modulation of WNT and ACTIVIN signaling yields CD34+ hematopoietic cells with HOXA expression that more closely resembles that of cord blood. The cultures generate a network of aorta-like SOX17+ vessels from which RUNX1C+ blood cells emerge, similar to hematopoiesis in the aorta-gonad-mesonephros (AGM). Nascent CD34+ hematopoietic cells and corresponding cells sorted from human AGM show similar expression of cell surface receptors, signaling molecules and transcription factors. Our findings provide an approach to mimic in vitro a key early stage in human hematopoiesis for the generation of AGM-derived hematopoietic lineages from hESCs.


Subject(s)
Embryonic Stem Cells/cytology , Hematopoietic Stem Cells/cytology , Homeodomain Proteins/metabolism , Mesonephros/cytology , Mesonephros/embryology , Neovascularization, Physiologic/physiology , Aorta/cytology , Aorta/embryology , Aorta/growth & development , Cell Differentiation/physiology , Cells, Cultured , Embryonic Stem Cells/physiology , Gonads/cytology , Gonads/embryology , Gonads/growth & development , Hematopoietic Stem Cells/physiology , Humans , Mesonephros/growth & development
2.
Stem Cell Res ; 10(1): 103-17, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23164599

ABSTRACT

The limited availability of human vascular endothelial cells (ECs) hampers research into EC function whilst the lack of precisely defined culture conditions for this cell type presents problems for addressing basic questions surrounding EC physiology. We aimed to generate endothelial progenitors from human pluripotent stem cells to facilitate the study of human EC physiology, using a defined serum-free protocol. Human embryonic stem cells (hESC-ECs) differentiated under serum-free conditions generated CD34(+)KDR(+) endothelial progenitor cells after 6days that could be further expanded in the presence of vascular endothelial growth factor (VEGF). The resultant EC population expressed CD31 and TIE2/TEK, took up acetylated low-density lipoprotein (LDL) and up-regulated expression of ICAM-1, PAI-1 and ET-1 following treatment with TNFα. Immunofluorescence studies indicated that a key mediator of vascular tone, endothelial nitric oxide synthase (eNOS), was localised to a perinuclear compartment of hESC-ECs, in contrast with the pan-cellular distribution of this enzyme within human umbilical vein ECs (HUVECs). Further investigation revealed that that the serum-associated lipids, lysophosphatidic acid (LPA) and platelet activating factor (PAF), were the key molecules that affected eNOS localisation in hESC-ECs cultures. These studies illustrate the feasibility of EC generation from hESCs and the utility of these cells for investigating environmental cues that impact on EC phenotype. We have demonstrated a hitherto unrecognized role for LPA and PAF in the regulation of eNOS subcellular localization.


Subject(s)
Culture Media/pharmacology , Embryonic Stem Cells/drug effects , Endothelial Cells/cytology , Lysophospholipids/pharmacology , Nitric Oxide Synthase Type III/analysis , Platelet Activating Factor/pharmacology , Antigens, CD34/metabolism , Cell Differentiation/drug effects , Cell Line , Collagen/chemistry , Drug Combinations , Embryonic Stem Cells/cytology , Endothelial Cells/metabolism , Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Humans , Laminin/chemistry , Nitric Oxide Synthase Type III/metabolism , Proteoglycans/chemistry , Tumor Necrosis Factor-alpha/pharmacology
3.
Blood ; 111(8): 4055-63, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-17993616

ABSTRACT

Previous studies revealed that mAb BB9 reacts with a subset of CD34(+) human BM cells with hematopoietic stem cell (HSC) characteristics. Here we map BB9 expression throughout hematopoietic development and show that the earliest definitive HSCs that arise at the ventral wall of the aorta and surrounding endothelial cells are BB9(+). Thereafter, BB9 is expressed by primitive hematopoietic cells in fetal liver and in umbilical cord blood (UCB). BB9(+)CD34(+) UCB cells transplanted into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice contribute 10-fold higher numbers of multilineage blood cells than their CD34(+)BB9(-) counterparts and contain a significantly higher incidence of SCID-repopulating cells than the unfractionated CD34(+) population. Protein microsequencing of the 160-kDa band corresponding to the BB9 protein established its identity as that of somatic angiotensin-converting enzyme (ACE). Although the role of ACE on human HSCs remains to be determined, these studies designate ACE as a hitherto unrecognized marker of human HSCs throughout hematopoietic ontogeny and adulthood.


Subject(s)
Fetus/enzymology , Hematopoietic Stem Cells/enzymology , Hematopoietic System/enzymology , Peptidyl-Dipeptidase A/metabolism , Adult , Animals , Antibodies, Monoclonal , Antibody Specificity/drug effects , Antigens, CD34/metabolism , Cell Count , Cell Lineage/drug effects , Cell Proliferation/drug effects , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryo, Mammalian/enzymology , Female , Fetus/drug effects , Flow Cytometry , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic System/embryology , Humans , Lisinopril/pharmacology , Mice , Mice, Inbred NOD , Mice, SCID , Renin-Angiotensin System/drug effects , Signal Transduction/drug effects
4.
Stem Cells ; 24(11): 2382-90, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16857898

ABSTRACT

Recently, we described a rare cell type within the adult murine pituitary gland with progenitor cell hallmarks (PCFCs). PCFCs are contained exclusively within a subpopulation of cells that import fluorescent beta-Ala-Lys-Nepsilon-AMCA (7-amino-4-methylcoumarin-3-acetic acid). Herein, we investigate the utility of cell surface molecules angiotensin-converting enzyme (ACE) and stem cell antigen-1 (Sca-1) to further enrich for PCFCs. ACE and Sca-1 were expressed on 61% and 55% of AMCA(+)CD45(-)CD31(-) cells, respectively, and coexpressed on 38%. ACE(+)Sca-1(+)AMCA(+) cells enriched for PCFCs by 195-fold over unselected cells. ACE(+)AMCA(+) cells enriched for PCFCs by 170-fold, and colonies were twofold larger than for AMCA(+) selection alone. Conversely, ACE(-)-selected cells reduced both colony-forming activity and size. Notably, colonies generated from AMCA(+) cells obtained from ACE(null) mice were 2.7-fold smaller than for wild-type mice. These data identify ACE as a previously unrecognized marker of PCFCs and suggest that ACE is functionally important for PCFC proliferation. Anatomically, the cells that imported AMCA and expressed ACE were situated in the marginal epithelial cell layer of the pituitary cleft and in the adjacent subluminal zone, thus supporting previous proposals that the luminal zone is a source of precursor cells in the adult pituitary.


Subject(s)
Adult Stem Cells/metabolism , Cell Proliferation , Peptidyl-Dipeptidase A/metabolism , Pituitary Gland/cytology , Pituitary Gland/metabolism , Adult Stem Cells/enzymology , Animals , Antigens, Ly/analysis , Cell Separation/methods , Clone Cells , Colony-Forming Units Assay , Coumarins/metabolism , Dipeptides/metabolism , Female , Flow Cytometry , Fluorescent Dyes/metabolism , Membrane Proteins/analysis , Mice , Mice, Knockout , Microscopy, Fluorescence , Peptidyl-Dipeptidase A/genetics , Pituitary Gland/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL