Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Antimicrob Agents Chemother ; 66(5): e0169621, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35465706

ABSTRACT

The combination antimalarial therapy of artemisinin-naphthoquine (ART-NQ) was developed as a single-dose therapy, aiming to improve adherence relative to the multiday schedules of other artemisinin combination therapies. The pharmacokinetics of ART-NQ has not been well characterized, especially in children. A pharmacokinetic study was conducted in adults and children over 5 years of age (6 to 10, 11 to 17, and ≥18 years of age) with uncomplicated malaria in Tanzania. The median weights for the three age groups were 20, 37.5, and 55 kg, respectively. Twenty-nine patients received single doses of 20 mg/kg of body weight for artemisinin and 8 mg/kg for naphthoquine, and plasma drug concentrations were assessed at 13 time points over 42 days from treatment. We used nonlinear mixed-effects modeling to interpret the data, and allometric scaling was employed to adjust for the effect of body size. The pharmacokinetics of artemisinin was best described by one-compartment model and that of naphthoquine by a two-compartment disposition model. Clearance values for a typical patient (55-kg body weight and 44.3-kg fat-free mass) were estimated as 66.7 L/h (95% confidence interval [CI], 57.3 to 78.5 L/h) for artemisinin and 44.2 L/h (95% CI, 37.9 to 50.6 L/h) for naphthoquine. Nevertheless, we show via simulation that patients weighing ≥70 kg achieve on average a 30% lower day 7 concentration compared to a 48-kg reference patient at the doses tested, suggesting dose increases may be warranted to ensure adequate exposure. (This study has been registered at ClinicalTrials.gov under identifier NCT01930331.).


Subject(s)
Antimalarials , Artemisinins , Folic Acid Antagonists , Malaria, Falciparum , Naphthoquinones , 1-Naphthylamine/analogs & derivatives , Adolescent , Adult , Aminoquinolines , Antimalarials/adverse effects , Artemisinins/adverse effects , Body Weight , Child , Humans , Malaria, Falciparum/drug therapy , Naphthoquinones/therapeutic use , Tanzania
2.
Clin Infect Dis ; 71(11): 2849-2857, 2020 12 31.
Article in English | MEDLINE | ID: mdl-31782768

ABSTRACT

BACKGROUND: A vaccine would be an ideal tool for reducing malaria's impact. PfSPZ Vaccine (radiation attenuated, aseptic, purified, cryopreserved Plasmodium falciparum [Pf] sporozoites [SPZ]) has been well tolerated and safe in >1526 malaria-naive and experienced 6-month to 65-year-olds in the United States, Europe, and Africa. When vaccine efficacy (VE) of 5 doses of 2.7 × 105 PfSPZ of PfSPZ Vaccine was assessed in adults against controlled human malaria infection (CHMI) in the United States and Tanzania and intense field transmission of heterogeneous Pf in Mali, Tanzanians had the lowest VE (20%). METHODS: To increase VE in Tanzania, we increased PfSPZ/dose (9 × 105 or 1.8 × 106) and decreased numbers of doses to 3 at 8-week intervals in a double blind, placebo-controlled trial. RESULTS: All 22 CHMIs in controls resulted in parasitemia by quantitative polymerase chain reaction. For the 9 × 105 PfSPZ group, VE was 100% (5/5) at 3 or 11 weeks (P < .000l, Barnard test, 2-tailed). For 1.8 × 106 PfSPZ, VE was 33% (2/6) at 7.5 weeks (P = .028). VE of dosage groups (100% vs 33%) was significantly different (P = .022). Volunteers underwent repeat CHMI at 37-40 weeks after last dose. 6/6 and 5/6 volunteers developed parasitemia, but time to first parasitemia was significantly longer than controls in the 9 × 105 PfSPZ group (10.89 vs 7.80 days) (P = .039), indicating a significant reduction in parasites in the liver. Antibody and T-cell responses were higher in the 1.8 × 106 PfSPZ group. CONCLUSIONS: In Tanzania, increasing the dose from 2.7 × 105 to 9 × 105 PfSPZ increased VE from 20% to 100%, but increasing to 1.8 × 106 PfSPZ significantly reduced VE. CLINICAL TRIALS REGISTRATION: NCT02613520.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Adult , Animals , Europe , Humans , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Mali , Plasmodium falciparum , Sporozoites , Tanzania
3.
Clin Infect Dis ; 68(3): 466-474, 2019 01 18.
Article in English | MEDLINE | ID: mdl-29945169

ABSTRACT

Background: P27A is an unstructured 104mer synthetic peptide from Plasmodium falciparum trophozoite exported protein 1 (TEX1), the target of human antibodies inhibiting parasite growth. The present project aimed at evaluating the safety and immunogenicity of P27A peptide vaccine in malaria-nonexposed European and malaria-exposed African adults. Methods: This study was designed as a staggered, fast-track, randomized, antigen and adjuvant dose-finding, multicenter phase 1a/1b trial, conducted in Switzerland and Tanzania. P27A antigen (10 or 50 µg), adjuvanted with Alhydrogel or glucopyranosil lipid adjuvant stable emulsion (GLA-SE; 2.5 or 5 µg), or control rabies vaccine (Verorab) were administered intramuscularly to 16 malaria-nonexposed and 40 malaria-exposed subjects on days 0, 28, and 56. Local and systemic adverse events (AEs) as well as humoral and cellular immune responses were assessed after each injection and during the 34-week follow-up. Results: Most AEs were mild to moderate and resolved completely within 48 hours. Systemic AEs were more frequent in the formulation with alum as compared to GLA-SE, whereas local AEs were more frequent after GLA-SE. No serious AEs occurred. Supported by a mixed Th1/Th2 cell-mediated immunity, P27A induced a marked specific antibody response able to recognize TEX1 in infected erythrocytes and to inhibit parasite growth through an antibody-dependent cellular inhibition mechanism. Incidence of AEs and antibody responses were significantly lower in malaria-exposed Tanzanian subjects than in nonexposed European subjects. Conclusions: The candidate vaccine P27A was safe and induced a particularly robust immunogenic response in combination with GLA-SE. This formulation should be considered for future efficacy trials. Clinical Trials Registration: NCT01949909, PACTR201310000683408.


Subject(s)
Antibodies, Protozoan/blood , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , Aluminum Hydroxide/administration & dosage , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Glucosides/administration & dosage , Healthy Volunteers , Humans , Injections, Intramuscular , Lipid A/administration & dosage , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Male , Middle Aged , Plasmodium falciparum , Switzerland , Tanzania , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Young Adult
4.
Am J Trop Med Hyg ; 109(4): 895-907, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37696518

ABSTRACT

Although studies on COVID-19 vaccine hesitancy are being undertaken widely worldwide, there is limited evidence in Tanzania. This study aims to assess the sociodemographic factors associated with COVID-19 vaccine hesitancy and the reasons given by unvaccinated study participants. We conducted a mixed-method cross-sectional study with two components-health facilities and communities-between March and September 2022. A structured questionnaire and in-depth interviews were used to collect quantitative and qualitative data, respectively. A total of 1,508 individuals agreed to participate in the survey and explained why they had not vaccinated against COVID-19. Of these participants, 62% indicated they would accept the vaccine, whereas 38% expressed skepticism. In a multivariate regression analysis, adult study participants 40 years and older were significantly more likely to report not intending to be vaccinated (adjusted odds ratio [AOR], 1.28; 95% CI, 1.01-1.61; P = 0.04) than youth and middle-aged study participants between 18 and 40 years. Furthermore, female study participants had a greater likelihood of not intending to be vaccinated (AOR, 1.51; 95% CI, 1.19-1.90; P = 0.001) than male study participants. The study identified fear of safety and short-term side effects, and lack of trust of the COVID-19 vaccine; belief in spiritual or religious views; and belief in local remedies and other precautions or preventive measures as the major contributors to COVID-19 vaccine hesitancy in Tanzania. Further empirical studies are needed to confirm these findings and to understand more fully the reasons for vaccine hesitancy in different demographic groups.

5.
Am J Trop Med Hyg ; 109(1): 138-146, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37160281

ABSTRACT

The radiation-attenuated Plasmodium falciparum sporozoites (PfSPZ) Vaccine has demonstrated safety and immunogenicity in 5-month-old to 50-year-old Africans in multiple trials. Except for one, each trial has restricted enrollment to either infants and children or adults < 50 years old. This trial was conducted in Equatorial Guinea and assessed the safety, tolerability, and immunogenicity of three direct venous inoculations of 1.8 × 106 or 2.7 × 106 PfSPZ, of PfSPZ Vaccine, or normal saline administered at 8-week intervals in a randomized, double-blind, placebo-controlled trial stratified by age (6-11 months and 1-5, 6-10, 11-17, 18-35, and 36-61 years). All doses were successfully administered. In all, 192/207 injections (93%) in those aged 6-61 years were rated as causing no or mild pain. There were no significant differences in solicited adverse events (AEs) between vaccinees and controls in any age group (P ≥ 0.17). There were no significant differences between vaccinees and controls with respect to the rates or severity of unsolicited AEs or laboratory abnormalities. Development of antibodies to P. falciparum circumsporozoite protein occurred in 67/69 vaccinees (97%) and 0/15 controls. Median antibody levels were highest in infants and 1-5-year-olds and declined progressively with age. Antibody responses in children were greater than in adults protected against controlled human malaria infection. Robust immunogenicity, combined with a benign AE profile, indicates children are an ideal target for immunization with PfSPZ Vaccine.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Animals , Adult , Humans , Child , Infant , Child, Preschool , Middle Aged , Plasmodium falciparum , Malaria, Falciparum/prevention & control , Sporozoites , Vaccines, Attenuated , Equatorial Guinea , Double-Blind Method , Immunogenicity, Vaccine
6.
Front Immunol ; 13: 1006716, 2022.
Article in English | MEDLINE | ID: mdl-36389797

ABSTRACT

Background: While prior research has shown differences in the risk of malaria infection and sickness between males and females, little is known about sex differences in vaccine-induced immunity to malaria. Identifying such differences could elucidate important aspects of malaria biology and facilitate development of improved approaches to malaria vaccination. Methods: Using a standardized enzyme-linked immunosorbent assay, IgG antibodies to the major surface protein on Plasmodium falciparum (Pf) sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured before and two weeks after administration of a PfSPZ-based malaria vaccine (PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the US and five countries in Africa, to determine if there were differences in vaccine elicited antibody response between males and females and if these differences were associated with differential protection against naturally transmitted Pf malaria (Africa) or controlled human malaria infection (Germany, the US and Africa). Results: Females ≥ 11 years of age made significantly higher levels of antibodies to PfCSP than did males in most trials, while there was no indication of such differences in infants or children. Although adult females had higher levels of antibodies, there was no evidence of improved protection compared to males. In 2 of the 7 trials with sufficient data, protected males had significantly higher levels of antibodies than unprotected males, and in 3 other trials protected females had higher levels of antibodies than did unprotected females. Conclusion: Immunization with PfSPZ Vaccine induced higher levels of antibodies in post-pubertal females but showed equivalent protection in males and females. We conclude that the increased antibody levels in post-pubertal females did not contribute substantially to improved protection. We hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially contribute directly to protection, they primarily correlate with other, potentially protective immune mechanisms, such as antibody dependent and antibody independent cellular responses in the liver.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Adult , Child , Infant , Animals , Female , Humans , Male , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Sporozoites , Malaria/drug therapy
7.
Nanoscale ; 13(4): 2338-2349, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33438712

ABSTRACT

Malaria is a life-threatening epidemic disease with half of the world's population at risk. Although its incidence rate has fallen since 2010, this ratio dramatically stalled between 2014 and 2018. New fast and optimized tools in vaccine analysis and seroconversion testing are critically needed. We developed a clinical diagnostic device based on piezo-actuated nanoresonators that perform as quantitative in situ calibrated nano-bio sensors for specific detection of multiple target molecules in serum samples. The immunoassay successfully diagnoses humoral immune responses induced by malaria vaccine candidates and reveals the timeline and stage of the infection. We applied the newly developed strategy to a variety of different samples, from pure antibody/vaccine solutions, to blood samples from clinical trials on both naïve and pre-exposed malaria volunteers from sub-Saharan countries. Our nanomechanical assay provides a direct one-step label-free quantitative immunoassay that is on par with the gold-standard, multi-step enzyme-linked immunosorbent assay (ELISA). We achieve a limit of detection of few pg ml-1, or sub-pM concentrations. The 6 µl sample volume allows more than 50 experiments from one finger prick. Furthermore, we simultaneously detected multiple analytes by differential functionalization of multiple sensors in parallel. The inherent differential read-out with in situ controls reduces false positive results. Due to the faster turnaround time, the minimal volume required and the automatized handling system, this technique has great potential for miniaturization and routine diagnostics in pandemic emergencies.


Subject(s)
Malaria Vaccines , Malaria , Enzyme-Linked Immunosorbent Assay , Humans , Immunoassay , Malaria/diagnosis , Malaria/prevention & control , Nanotechnology
8.
Am J Trop Med Hyg ; 104(1): 283-293, 2021 01.
Article in English | MEDLINE | ID: mdl-33205741

ABSTRACT

Plasmodium falciparum sporozoite (PfSPZ) Vaccine (radiation-attenuated, aseptic, purified, cryopreserved PfSPZ) and PfSPZ-CVac (infectious, aseptic, purified, cryopreserved PfSPZ administered to subjects taking weekly chloroquine chemoprophylaxis) have shown vaccine efficacies (VEs) of 100% against homologous controlled human malaria infection (CHMI) in nonimmune adults. Plasmodium falciparum sporozoite-CVac has never been assessed against CHMI in African vaccinees. We assessed the safety, immunogenicity, and VE against homologous CHMI of three doses of 2.7 × 106 PfSPZ of PfSPZ Vaccine at 8-week intervals and three doses of 1.0 × 105 PfSPZ of PfSPZ-CVac at 4-week intervals with each arm randomized, double-blind, placebo-controlled, and conducted in parallel. There were no differences in solicited adverse events between vaccinees and normal saline controls, or between PfSPZ Vaccine and PfSPZ-CVac recipients during the 6 days after administration of investigational product. However, from days 7-13, PfSPZ-CVac recipients had significantly more AEs, probably because of Pf parasitemia. Antibody responses were 2.9 times higher in PfSPZ Vaccine recipients than PfSPZ-CVac recipients at time of CHMI. Vaccine efficacy at a median of 14 weeks after last PfSPZ-CVac dose was 55% (8 of 13, P = 0.051) and at a median of 15 weeks after last PfSPZ Vaccine dose was 27% (5 of 15, P = 0.32). The higher VE in PfSPZ-CVac recipients of 55% with a 27-fold lower dose was likely a result of later stage parasite maturation in the liver, leading to induction of cellular immunity against a greater quantity and broader array of antigens.


Subject(s)
Immunogenicity, Vaccine , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Adolescent , Adult , Aged , Animals , Antibodies, Protozoan , Antimalarials/therapeutic use , Child , Child, Preschool , Chloroquine/therapeutic use , Double-Blind Method , Equatorial Guinea/epidemiology , Female , Humans , Immunization , Infant , Malaria Vaccines/adverse effects , Male , Middle Aged , Parasitemia , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology , Young Adult
9.
Sci Rep ; 9(1): 13107, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511562

ABSTRACT

The rapid and accurate diagnosis of Plasmodium falciparum malaria infection is an essential factor in malaria control. Currently, malaria diagnosis in the field depends heavily on using rapid diagnostic tests (RDTs) many of which detect circulating parasite-derived histidine-rich protein 2 antigen (PfHRP2) in capillary blood. P. falciparum strains lacking PfHRP2, due to pfhrp2 gene deletions, are an emerging threat to malaria control programs. The novel assay described here, named qHRP2/3-del, is well suited for high-throughput screening of P. falciparum isolates to identify these gene deletions. The qHRP2/3-del assay identified pfhrp2 and pfhrp3 deletion status correctly in 93.4% of samples with parasitemia levels higher than 5 parasites/µL when compared to nested PCR. The qHRP2/3-del assay can correctly identify pfhrp2 and pfhrp3 gene deletions in multiple strain co-infections, particularly prevalent in Sub-Saharan countries. Deployment of this qHRP2/3-del assay will provide rapid insight into the prevalence and potential spread of P. falciparum isolates that escape surveillance by RDTs.


Subject(s)
Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Gene Deletion , Plasmodium falciparum/genetics , Polymerase Chain Reaction/methods , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Plasmodium falciparum/physiology
10.
J Exp Med ; 216(8): 1857-1873, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31175140

ABSTRACT

The generation of protective humoral immunity after vaccination relies on the productive interaction between antigen-specific B cells and T follicular helper (Tfh) cells. Despite the central role of Tfh cells in vaccine responses, there is currently no validated way to enhance their differentiation in humans. From paired human lymph node and blood samples, we identify a population of circulating Tfh cells that are transcriptionally and clonally similar to germinal center Tfh cells. In a clinical trial of vaccine formulations, circulating Tfh cells were expanded in Tanzanian volunteers when an experimental malaria vaccine was adjuvanted in GLA-SE but not when formulated in Alum. The GLA-SE-formulated peptide was associated with an increase in the extrafollicular antibody response, long-lived antibody production, and the emergence of public TCRß clonotypes in circulating Tfh cells. We demonstrate that altering vaccine adjuvants is a rational approach for enhancing Tfh cells in humans, thereby supporting the long-lived humoral immunity that is required for effective vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Drug Compounding/methods , Glucosides/pharmacology , Lipid A/pharmacology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Vaccination/methods , Adolescent , Adult , Aged , Aged, 80 and over , Aluminum Hydroxide/pharmacology , Antibodies, Viral/drug effects , Antibodies, Viral/immunology , Antigens, Protozoan/immunology , B-Lymphocytes/immunology , Cells, Cultured , Female , Germinal Center/immunology , Humans , Immunity, Humoral/immunology , Influenza Vaccines/immunology , Lymph Nodes/immunology , Malaria Vaccines/immunology , Male , Middle Aged , Plasmodium falciparum/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Young Adult
11.
Am J Trop Med Hyg ; 100(6): 1433-1444, 2019 06.
Article in English | MEDLINE | ID: mdl-30994090

ABSTRACT

In 2016, there were more cases and deaths caused by malaria globally than in 2015. An effective vaccine would be an ideal additional tool for reducing malaria's impact. Sanaria® PfSPZ Vaccine, composed of radiation-attenuated, aseptic, purified, cryopreserved Plasmodium falciparum (Pf) sporozoites (SPZ) has been well tolerated and safe in malaria-naïve and experienced adults in the United States and Mali and protective against controlled human malaria infection with Pf in the United States and field transmission of Pf in Mali, but had not been assessed in younger age groups. We, therefore, evaluated PfSPZ Vaccine in 93 Tanzanians aged 45 years to 6 months in a randomized, double-blind, normal saline placebo-controlled trial. There were no significant differences in adverse events between vaccinees and controls or between dosage regimens. Because all age groups received three doses of 9.0 × 105 PfSPZ of PfSPZ Vaccine, immune responses were compared at this dosage. Median antibody responses against Pf circumsporozoite protein and PfSPZ were highest in infants and lowest in adults. T-cell responses were highest in 6-10-year olds after one dose and 1-5-year olds after three doses; infants had no significant positive T-cell responses. The safety data were used to support initiation of trials in > 300 infants in Kenya and Equatorial Guinea. Because PfSPZ Vaccine-induced protection is thought to be mediated by T cells, the T-cell data suggest PfSPZ Vaccine may be more protective in children than in adults, whereas infants may not be immunologically mature enough to respond to the PfSPZ Vaccine immunization regimen assessed.


Subject(s)
Antibodies, Protozoan/blood , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , T-Lymphocytes/physiology , Adolescent , Adult , Antibody Formation , Child , Child, Preschool , Double-Blind Method , Female , Humans , Infant , Malaria Vaccines/adverse effects , Male , Middle Aged , Tanzania , Vaccines, Attenuated
12.
Am J Trop Med Hyg ; 99(2): 338-349, 2018 08.
Article in English | MEDLINE | ID: mdl-29943719

ABSTRACT

We are using controlled human malaria infection (CHMI) by direct venous inoculation (DVI) of cryopreserved, infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) to try to reduce time and costs of developing PfSPZ Vaccine to prevent malaria in Africa. Immunization with five doses at 0, 4, 8, 12, and 20 weeks of 2.7 × 105 PfSPZ of PfSPZ Vaccine gave 65% vaccine efficacy (VE) at 24 weeks against mosquito bite CHMI in U.S. adults and 52% (time to event) or 29% (proportional) VE over 24 weeks against naturally transmitted Pf in Malian adults. We assessed the identical regimen in Tanzanians for VE against PfSPZ Challenge. Twenty- to thirty-year-old men were randomized to receive five doses normal saline or PfSPZ Vaccine in a double-blind trial. Vaccine efficacy was assessed 3 and 24 weeks later. Adverse events were similar in vaccinees and controls. Antibody responses to Pf circumsporozoite protein were significantly lower than in malaria-naïve Americans, but significantly higher than in Malians. All 18 controls developed Pf parasitemia after CHMI. Four of 20 (20%) vaccinees remained uninfected after 3 week CHMI (P = 0.015 by time to event, P = 0.543 by proportional analysis) and all four (100%) were uninfected after repeat 24 week CHMI (P = 0.005 by proportional, P = 0.004 by time to event analysis). Plasmodium falciparum SPZ Vaccine was safe, well tolerated, and induced durable VE in four subjects. Controlled human malaria infection by DVI of PfSPZ Challenge appeared more stringent over 24 weeks than mosquito bite CHMI in United States or natural exposure in Malian adults, thereby providing a rigorous test of VE in Africa.


Subject(s)
Immunogenicity, Vaccine , Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Sporozoites/immunology , Administration, Intravenous , Adult , Double-Blind Method , Human Experimentation , Humans , Immunization/adverse effects , Malaria Vaccines/adverse effects , Male , Tanzania , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL