Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Med Genet ; 60(6): 557-567, 2023 06.
Article in English | MEDLINE | ID: mdl-36270769

ABSTRACT

BACKGROUND: Patients with serrated polyposis syndrome (SPS) have multiple and/or large serrated colonic polyps and higher risk for colorectal cancer. SPS inherited genetic basis is mostly unknown. We aimed to identify new germline predisposition factors for SPS by functionally evaluating a candidate gene and replicating it in additional SPS cohorts. METHODS: After a previous whole-exome sequencing in 39 SPS patients from 16 families (discovery cohort), we sequenced specific genes in an independent validation cohort of 211 unrelated SPS cases. Additional external replication was also available in 297 SPS cases. The WNK2 gene was disrupted in HT-29 cells by gene editing, and WNK2 variants were transfected using a lentiviral delivery system. Cells were analysed by immunoblots, real-time PCR and functional assays monitoring the mitogen-activated protein kinase (MAPK) pathway, cell cycle progression, survival and adhesion. RESULTS: We identified 2 rare germline variants in the WNK2 gene in the discovery cohort, 3 additional variants in the validation cohort and 10 other variants in the external cohorts. Variants c.2105C>T (p.Pro702Leu), c.4820C>T (p.Ala1607Val) and c.6157G>A (p.Val2053Ile) were functionally characterised, displaying higher levels of phospho-PAK1/2, phospho-ERK1/2, CCND1, clonogenic capacity and MMP2. CONCLUSION: After whole-exome sequencing in SPS cases with familial aggregation and replication of results in additional cohorts, we identified rare germline variants in the WNK2 gene. Functional studies suggested germline WNK2 variants affect protein function in the context of the MAPK pathway, a molecular hallmark in this disease.


Subject(s)
Adenomatous Polyposis Coli , Colonic Polyps , Colorectal Neoplasms , Humans , Germ-Line Mutation/genetics , Adenomatous Polyposis Coli/genetics , Colonic Polyps/genetics , Genotype , Colorectal Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics
2.
Int J Mol Sci ; 22(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802562

ABSTRACT

VTRNA2-1 is a metastable epiallele with accumulating evidence that methylation at this region is heritable, modifiable and associated with disease including risk and progression of cancer. This study investigated the influence of genetic variation and other factors such as age and adult lifestyle on blood DNA methylation in this region. We first sequenced the VTRNA2-1 gene region in multiple-case breast cancer families in which VTRNA2-1 methylation was identified as heritable and associated with breast cancer risk. Methylation quantitative trait loci (mQTL) were investigated using a prospective cohort study (4500 participants with genotyping and methylation data). The cis-mQTL analysis (334 variants ± 50 kb of the most heritable CpG site) identified 43 variants associated with VTRNA2-1 methylation (p < 1.5 × 10-4); however, these explained little of the methylation variation (R2 < 0.5% for each of these variants). No genetic variants elsewhere in the genome were found to strongly influence VTRNA2-1 methylation. SNP-based heritability estimates were consistent with the mQTL findings (h2 = 0, 95%CI: -0.14 to 0.14). We found no evidence that age, sex, country of birth, smoking, body mass index, alcohol consumption or diet influenced blood DNA methylation at VTRNA2-1. Genetic factors and adult lifestyle play a minimal role in explaining methylation variability at the heritable VTRNA2-1 cluster.


Subject(s)
DNA Methylation/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide/genetics , Aged , Breast Neoplasms/genetics , Case-Control Studies , CpG Islands/genetics , Female , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Prospective Studies , Quantitative Trait Loci/genetics
3.
Exp Mol Pathol ; 105(3): 404-410, 2018 12.
Article in English | MEDLINE | ID: mdl-30423315

ABSTRACT

Breast cancers arising in women carrying a germline mutation in BRCA1 are typically high-grade, early-onset and have distinct morphological features (BRCA1-like). However, the majority of early-onset breast cancers of this morphological type are not associated with germline BRCA1 mutations or constitutional BRCA1 promoter methylation. We aimed to assess DNA methylation across the genome for associations with the "BRCA1-like" morphology. Genome-wide methylation in blood-derived DNA was measured using the Infinium HumanMethylation450K BeadChip assay for women under the age of 40 years participating in the Australian Breast Cancer Family Study (ABCFS) diagnosed with: i) BRCA1-like breast cancer (n = 30); and ii) breast cancer without BRCA1-like morphological features (non BRCA1-like; n = 30), and age-matched unaffected women (controls; n = 30). Corresponding tumour-derived DNA from 43 of the affected women was also assessed. Methylation of blood-derived DNA was found to be elevated across 17 consecutive marks in the BRCA1 promoter region and decreased at several other genomic regions (including TWIST2 and CTBP1) for 7 women (23%) diagnosed with BRCA1-like breast cancer compared with women in the other groups. Corresponding tumour-derived DNA available from 5 of these 7 women had elevated methylation within the BRCA1 and SPHK2 promoter region and decreased methylation within the ADAP1, IGF2BP3 and SPATA13 promoter region when compared with the other breast tumours. These methylation marks could be biomarkers of risk for BRCA1-like breast cancer, and could be responsible in part for their distinctive morphological features and biology. As such, they may assist with prevention and targeted therapies for this cancer subtype.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , DNA Methylation/genetics , Adult , Australia , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Middle Aged , Promoter Regions, Genetic , Registries
4.
Fam Cancer ; 22(3): 313-317, 2023 07.
Article in English | MEDLINE | ID: mdl-36708485

ABSTRACT

DNA methylation marks that are inherited from parents to offspring are known to play a role in cancer risk and could explain part of the familial risk for cancer. We therefore conducted a genome-wide search for heritable methylation marks associated with prostate cancer risk. Peripheral blood DNA methylation was measured for 133 of the 469 members of 25 multiple-case prostate cancer families, using the EPIC array. We used these families to systematically search the genome for methylation marks with Mendelian patterns of inheritance, then we tested the 1,000 most heritable marks for association with prostate cancer risk. After correcting for multiple testing, 41 heritable methylation marks were associated with prostate cancer risk. Separate analyses, based on 869 incident cases and 869 controls from a prospective cohort study, showed that 9 of these marks near the metastable epiallele VTRNA2-1 were also nominally associated with aggressive prostate cancer risk in the population.


Subject(s)
DNA Methylation , Prostatic Neoplasms , Male , Humans , Prospective Studies , Prostatic Neoplasms/genetics , Inheritance Patterns , Epigenesis, Genetic
5.
Clin Epigenetics ; 13(1): 11, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33461604

ABSTRACT

BACKGROUND: Tumour DNA methylation profiling has shown potential to refine disease subtyping and improve the diagnosis and prognosis prediction of breast cancer. However, limited data exist regarding invasive lobular breast cancer (ILBC). Here, we investigated the genome-wide variability of DNA methylation levels across ILBC tumours and assessed the association between methylation levels at the variably methylated regions and overall survival in women with ILBC. METHODS: Tumour-enriched DNA was prepared by macrodissecting formalin-fixed paraffin embedded (FFPE) tumour tissue from 130 ILBCs diagnosed in the participants of the Melbourne Collaborative Cohort Study (MCCS). Genome-wide tumour DNA methylation was measured using the HumanMethylation 450K (HM450K) BeadChip array. Variably methylated regions (VMRs) were identified using the DMRcate package in R. Cox proportional hazards regression models were used to assess the association between methylation levels at the ten most significant VMRs and overall survival. Gene set enrichment analyses were undertaken using the web-based tool Metaspace. Replication of the VMR and survival analysis findings was examined using data retrieved from The Cancer Genome Atlas (TCGA) for 168 ILBC cases. We also examined the correlation between methylation and gene expression for the ten VMRs of interest using TCGA data. RESULTS: We identified 2771 VMRs (P < 10-8) in ILBC tumours. The ten most variably methylated clusters were predominantly located in the promoter region of the genes: ISM1, APC, TMEM101, ASCL2, NKX6, HIST3H2A/HIST3H2BB, HCG4P3, HES5, CELF2 and EFCAB4B. Higher methylation level at several of these VMRs showed an association with reduced overall survival in the MCCS. In TCGA, all associations were in the same direction, however stronger than in the MCCS. The pooled analysis of the MCCS and TCGA data showed that methylation at four of the ten genes was associated with reduced overall survival, independently of age and tumour stage; APC: Hazard Ratio (95% Confidence interval) per one-unit M-value increase: 1.18 (1.02-1.36), TMEM101: 1.23 (1.02-1.48), HCG4P3: 1.37 (1.05-1.79) and CELF2: 1.21 (1.02-1.43). A negative correlation was observed between methylation and gene expression for CELF2 (R = - 0.25, P = 0.001), but not for TMEM101 and APC. CONCLUSIONS: Our study identified regions showing greatest variability across the ILBC tumour genome and found methylation at several genes to potentially serve as a biomarker of survival for women with ILBC.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/physiopathology , Carcinoma, Lobular/genetics , Carcinoma, Lobular/physiopathology , DNA Methylation , Survival Analysis , Adult , Aged , Cohort Studies , Female , Gene Expression Profiling , Genome-Wide Association Study , Humans , Middle Aged , Prognosis
6.
Cells ; 10(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34943892

ABSTRACT

Genetic variants in FOXO3 are associated with longevity. Here, we assessed whether blood DNA methylation at FOXO3 was associated with cancer risk, survival, and mortality. We used data from eight prospective case-control studies of breast (n = 409 cases), colorectal (n = 835), gastric (n = 170), kidney (n = 143), lung (n = 332), prostate (n = 869), and urothelial (n = 428) cancer and B-cell lymphoma (n = 438). Case-control pairs were matched on age, sex, country of birth, and smoking (lung cancer study). Conditional logistic regression was used to assess associations between cancer risk and methylation at 45 CpGs of FOXO3 included on the HumanMethylation450 assay. Mixed-effects Cox models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations with cancer survival (total n = 2286 deaths). Additionally, using data from 1088 older participants, we assessed associations of FOXO3 methylation with overall and cause-specific mortality (n = 354 deaths). Methylation at a CpG in the first exon region of FOXO3 (6:108882981) was associated with gastric cancer survival (HR = 2.39, 95% CI: 1.60-3.56, p = 1.9 × 10-5). Methylation at three CpGs in TSS1500 and gene body was associated with lung cancer survival (p < 6.1 × 10-5). We found no evidence of associations of FOXO3 methylation with cancer risk and mortality. Our findings may contribute to understanding the implication of FOXO3 in longevity.


Subject(s)
DNA Methylation/genetics , Forkhead Box Protein O3/blood , Forkhead Box Protein O3/genetics , Neoplasms/blood , Neoplasms/mortality , Adult , Aged , Case-Control Studies , Cohort Studies , CpG Islands/genetics , Female , Humans , Longevity/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors , Survival Analysis
7.
Cancers (Basel) ; 13(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919912

ABSTRACT

To investigate age- and sex-specific DNA methylation alterations related to cancer risk and survival, we used matched case-control studies of colorectal (n = 835), gastric (n = 170), kidney (n = 143), lung (n = 332), prostate (n = 869) and urothelial (n = 428) cancers, and mature B-cell lymphoma (n = 438). Linear mixed-effects models were conducted to identify age-, sex- and age-by-sex-associated methylation markers using a discovery (controls)-replication (cases) strategy. Replication was further examined using summary statistics from Generation Scotland (GS). Associations between replicated markers and risk of and survival from cancer were assessed using conditional logistic regression and Cox models (hazard ratios (HR)), respectively. We found 32,659, 23,141 and 48 CpGs with replicated associations for age, sex and age-by-sex, respectively. The replication rates for these CpGs using GS summary data were 94%, 86% and 91%, respectively. Significant associations for cancer risk and survival were identified at some individual age-related CpGs. Opposite to previous findings using epigenetic clocks, there was a strong negative trend in the association between epigenetic drift and risk of colorectal cancer. Methylation at two CpGs overlapping TMEM49 and ARX genes was associated with survival of overall (HR = 0.91, p = 7.7 × 10-4) and colorectal (HR = 1.52, p = 1.8 × 10-4) cancer, respectively, with significant age-by-sex interaction. Our results may provide markers for cancer early detection and prognosis prediction.

8.
Cancer Epidemiol Biomarkers Prev ; 30(12): 2197-2206, 2021 12.
Article in English | MEDLINE | ID: mdl-34526299

ABSTRACT

BACKGROUND: Self-reported information may not accurately capture smoking exposure. We aimed to evaluate whether smoking-associated DNA methylation markers improve urothelial cell carcinoma (UCC) risk prediction. METHODS: Conditional logistic regression was used to assess associations between blood-based methylation and UCC risk using two matched case-control samples: 404 pairs from the Melbourne Collaborative Cohort Study (MCCS) and 440 pairs from the Women's Health Initiative (WHI) cohort. Results were pooled using fixed-effects meta-analysis. We developed methylation-based predictors of UCC and evaluated their prediction accuracy on two replication data sets using the area under the curve (AUC). RESULTS: The meta-analysis identified associations (P < 4.7 × 10-5) for 29 of 1,061 smoking-associated methylation sites, but these were substantially attenuated after adjustment for self-reported smoking. Nominally significant associations (P < 0.05) were found for 387 (36%) and 86 (8%) of smoking-associated markers without/with adjustment for self-reported smoking, respectively, with same direction of association as with smoking for 387 (100%) and 79 (92%) markers. A Lasso-based predictor was associated with UCC risk in one replication data set in MCCS [N = 134; odds ratio per SD (OR) = 1.37; 95% CI, 1.00-1.90] after confounder adjustment; AUC = 0.66, compared with AUC = 0.64 without methylation information. Limited evidence of replication was found in the second testing data set in WHI (N = 440; OR = 1.09; 95% CI, 0.91-1.30). CONCLUSIONS: Combination of smoking-associated methylation marks may provide some improvement to UCC risk prediction. Our findings need further evaluation using larger data sets. IMPACT: DNA methylation may be associated with UCC risk beyond traditional smoking assessment and could contribute to some improvements in stratification of UCC risk in the general population.


Subject(s)
Carcinoma, Transitional Cell , Cohort Studies , DNA Methylation , Female , Humans , Prospective Studies , Smoking/adverse effects
9.
PLoS One ; 11(11): e0165436, 2016.
Article in English | MEDLINE | ID: mdl-27902704

ABSTRACT

DNA methylation can mimic the effects of both germline and somatic mutations for cancer predisposition genes such as BRCA1 and p16INK4a. Constitutional DNA methylation of the BRCA1 promoter has been well described and is associated with an increased risk of early-onset breast cancers that have BRCA1-mutation associated histological features. The role of methylation in the context of other breast cancer predisposition genes has been less well studied and often with conflicting or ambiguous outcomes. We examined the role of methylation in known breast cancer susceptibility genes in breast cancer predisposition and tumor development. We applied the Infinium HumanMethylation450 Beadchip (HM450K) array to blood and tumor-derived DNA from 43 women diagnosed with breast cancer before the age of 40 years and measured the methylation profiles across promoter regions of BRCA1, BRCA2, ATM, PALB2, CDH1, TP53, FANCM, CHEK2, MLH1, MSH2, MSH6 and PMS2. Prior genetic testing had demonstrated that these women did not carry a germline mutation in BRCA1, ATM, CHEK2, PALB2, TP53, BRCA2, CDH1 or FANCM. In addition to the BRCA1 promoter region, this work identified regions with variable methylation at multiple breast cancer susceptibility genes including PALB2 and MLH1. Methylation at the region of MLH1 in these breast cancers was not associated with microsatellite instability. This work informs future studies of the role of methylation in breast cancer susceptibility gene silencing.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , DNA Methylation , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Registries/statistics & numerical data , Adult , Age of Onset , Australia , Biomarkers, Tumor/genetics , DNA, Neoplasm/genetics , Female , Humans , Promoter Regions, Genetic/genetics
10.
Eur J Hum Genet ; 22(12): 1376-81, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24713664

ABSTRACT

The phenomenon of X chromosome inactivation in female mammals is well characterised and remains the archetypal example of dosage compensation via monoallelic expression. The temporal series of events that culminates in inactive X-specific gene silencing by DNA methylation has revealed a 'patchwork' of gene inactivation along the chromosome, with approximately 15% of genes escaping. Such genes are therefore potentially subject to sex-specific imbalance between males and females. Aside from XIST, the non-coding RNA on the X chromosome destined to be inactivated, very little is known about the extent of loci that may be selectively silenced on the active X chromosome (Xa). Using longitudinal array-based DNA methylation profiling of two human tissues, we have identified specific and widespread active X-specific DNA methylation showing stability over time and across tissues of disparate origin. Our panel of X-chromosome loci subject to methylation on Xa reflects a potentially novel mechanism for controlling female-specific X inactivation and sex-specific dimorphisms in humans. Further work is needed to investigate these phenomena.


Subject(s)
Chromosomes, Human, X/genetics , DNA Methylation , X Chromosome Inactivation/genetics , Databases, Genetic , Dosage Compensation, Genetic , Female , Gene Expression Regulation , Gene Silencing , Genetic Loci , Humans , Male , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL