Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Clin Genet ; 105(5): 561-566, 2024 05.
Article in English | MEDLINE | ID: mdl-38311882

ABSTRACT

Palmoplantar keratoderma (PPK) is a heterogeneous group of rare skin diseases characterized by hyperkeratosis on the palms or soles. The subtype isolated punctate PPK is caused by heterozygous variants in AAGAB. We investigated if the variant AAGAB c.370C>T, p.Arg124Ter in patients with punctate PPK in the Region of Southern Denmark represented a founder variant and estimated the age to the most recent common ancestor. We performed haplotype analysis on samples from 20 patients diagnosed with punctate PPK and the AAGAB c.370C>T, p.Arg124Ter variant. Using the Gamma Method, we calculated the years to the most recent common ancestor. We also explored the presence of the variant in other populations through literature and databases (HGMD, ClinVar, and gnomAD). Our analysis revealed a shared haplotype of 3.0 Mb, suggesting shared ancestry. The ancestral haplogroup was estimated to an age of 12.1 generations (CI: 4.9-20.3) equivalent to approximately 339 years (CI: 137-568). This study confirms that the frequently observed variant AAGAB c.370C>T, p.Arg124Ter in punctate PPK among patients in the Region of Southern Denmark is caused by a founder variant. We recommend testing for the variant as initial screening in our region and potentially for all Danish patients presenting with punctate PPK.


Subject(s)
Keratoderma, Palmoplantar , Humans , Keratoderma, Palmoplantar/genetics , Skin , Heterozygote , Haplotypes , Denmark , Adaptor Proteins, Vesicular Transport
2.
Cell Commun Signal ; 22(1): 330, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879537

ABSTRACT

Sex-specific gonadal differentiation is directed by complex signalling promoting development in either male or female direction, while simultaneously inhibiting the opposite pathway. In mice, the WNT/ß-catenin pathway promotes ovarian development and the importance of actively inhibiting this pathway to ensure normal testis development has been recognised. However, the implications of alterations in the tightly regulated WNT/ß-catenin signalling during human fetal gonad development has not yet been examined in detail. Thus, the aim of this study was to examine the consequences of dysregulating the WNT/ß-catenin signalling pathway in the supporting cell lineage during sex-specific human fetal gonad development using an established and extensively validated ex vivo culture model. Inhibition of WNT/ß-catenin signalling in human fetal ovary cultures resulted in only minor effects, including reduced secretion of RSPO1 and reduced cell proliferation although this was not consistently found in all treatment groups. In contrast, promotion of WNT/ß-catenin signalling in testes severely affected development and function. This included disrupted seminiferous cord structures, reduced cell proliferation, reduced expression of SOX9/AMH, reduced secretion of Inhibin B and AMH as well as loss of the germ cell population. Additionally, Leydig cell function was markedly impaired with reduced secretion of testosterone, androstenedione and INSL3. Together, this study suggests that dysregulated WNT/ß-catenin signalling during human fetal gonad development severely impairs testicular development and function. Importantly, our study highlights the notion that sufficient inhibition of the opposite pathway during sex-specific gonadal differentiation is essential to ensure normal development and function also applies to human fetal gonads.


Subject(s)
Testis , Wnt Signaling Pathway , Humans , Male , Testis/metabolism , Testis/embryology , Female , Sex Differentiation/genetics , Fetus/metabolism , Cell Differentiation , Cell Proliferation , beta Catenin/metabolism , Leydig Cells/metabolism , Leydig Cells/cytology , Ovary/metabolism , Ovary/embryology
3.
Cell Calcium ; 122: 102908, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852333

ABSTRACT

Animal and human studies have suggested that sex steroids have calciotropic actions, and it has been proposed that follicle-stimulating hormone (FSH) may exert direct effects on bone. Here, we demonstrate the expression of the receptor for Luteinizing hormone (LH) and human choriogonadotropin (hCG), LHCGR, in human kidney tissue, suggesting a potential influence on calcium homeostasis. To investigate the role of LHCGR agonist on calcium homeostasis in vivo, we conducted studies in male mice and human subjects. Male mice were treated with luteinizing hormone (LH), and human extrapolation was achieved by injecting 5000 IU hCG once to healthy men or men with hypergonadotropic or hypogonadotropic hypogonadism. In mice, LH treatment significantly increased urinary calcium excretion and induced a secondary increase in serum parathyroid hormone (PTH). Similarly, hCG treatment in healthy men led to a significant increase in urinary calcium excretion, serum PTH levels, and 1,25 (OH)2D3, while calcitonin, and albumin levels were reduced, possibly to avoid development of persistent hypocalcemia. Still, the rapid initial decline in ionized calcium coincided with a significant prolongation of the cardiac QTc-interval that normalized over time. The observed effects may be attributed to LH/hCG-receptor (LHCGR) activation, considering the presence of LHCGR expression in human kidney tissue, and the increase in sex steroids occurred several hours after the changes in calcium homeostasis. Our translational study shed light on the intricate relationship between gonadotropins, sex hormones and calcium, suggesting that LHCGR may be influencing calcium homeostasis directly or indirectly.


Subject(s)
Calcium , Chorionic Gonadotropin , Luteinizing Hormone , Parathyroid Hormone , Receptors, LH , Male , Humans , Chorionic Gonadotropin/pharmacology , Chorionic Gonadotropin/administration & dosage , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Calcium/metabolism , Calcium/urine , Parathyroid Hormone/blood , Animals , Receptors, LH/metabolism , Adult , Mice , Kidney/metabolism , Kidney/drug effects
4.
Nat Commun ; 15(1): 6126, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033139

ABSTRACT

Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.


Subject(s)
Adipose Tissue , Insulin Resistance , Obesity , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Adipose Tissue/metabolism , Mice , Obesity/metabolism , Insulin/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Adipocytes/metabolism , Bone Morphogenetic Proteins/metabolism , Muscles/metabolism , Male , Muscle, Skeletal/metabolism , Drosophila melanogaster/metabolism , Diet, High-Fat/adverse effects , Neurons/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL