Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Acta Neuropathol ; 135(5): 757-777, 2018 05.
Article in English | MEDLINE | ID: mdl-29541918

ABSTRACT

Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. ß-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP.


Subject(s)
Craniopharyngioma/metabolism , MAP Kinase Signaling System , Pituitary Neoplasms/metabolism , Transcriptome , Tumor Microenvironment/physiology , Animals , Computational Biology , Craniopharyngioma/pathology , Craniopharyngioma/therapy , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/metabolism , Inflammation/therapy , Laser Capture Microdissection , Mice , Neuroglia/metabolism , Odontogenesis/physiology , Pituitary Gland/embryology , Pituitary Gland/pathology , Pituitary Neoplasms/pathology , Pituitary Neoplasms/therapy , Sequence Analysis, RNA , Tissue Culture Techniques
2.
Neuro Oncol ; 19(1): 43-54, 2017 01.
Article in English | MEDLINE | ID: mdl-27365097

ABSTRACT

BACKGROUND: Glioma is the most common form of primary malignant brain tumor in adults, with approximately 4 cases per 100 000 people each year. Gliomas, like many tumors, are thought to primarily metabolize glucose for energy production; however, the reliance upon glycolysis has recently been called into question. In this study, we aimed to identify the metabolic fuel requirements of human glioma cells. METHODS: We used database searches and tissue culture resources to evaluate genotype and protein expression, tracked oxygen consumption rates to study metabolic responses to various substrates, performed histochemical techniques and fluorescence-activated cell sorting-based mitotic profiling to study cellular proliferation rates, and employed an animal model of malignant glioma to evaluate a new therapeutic intervention. RESULTS: We observed the presence of enzymes required for fatty acid oxidation within human glioma tissues. In addition, we demonstrated that this metabolic pathway is a major contributor to aerobic respiration in primary-cultured cells isolated from human glioma and grown under serum-free conditions. Moreover, inhibiting fatty acid oxidation reduces proliferative activity in these primary-cultured cells and prolongs survival in a syngeneic mouse model of malignant glioma. CONCLUSIONS: Fatty acid oxidation enzymes are present and active within glioma tissues. Targeting this metabolic pathway reduces energy production and cellular proliferation in glioma cells. The drug etomoxir may provide therapeutic benefit to patients with malignant glioma. In addition, the expression of fatty acid oxidation enzymes may provide prognostic indicators for clinical practice.


Subject(s)
Brain Neoplasms/pathology , Epoxy Compounds/pharmacology , Fatty Acids/metabolism , Glioma/pathology , Neural Stem Cells/pathology , Animals , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Proliferation/drug effects , Glioma/drug therapy , Glioma/metabolism , Glycolysis/drug effects , Humans , Hypoglycemic Agents/pharmacology , Mice , Mice, Inbred C57BL , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Oxidation-Reduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL