Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474249

ABSTRACT

Drug-induced liver injury (DILI) is a serious adverse hepatic event presenting diagnostic and prognostic challenges. The clinical categorization of DILI into hepatocellular, cholestatic, or mixed phenotype is based on serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) values; however, this classification may not capture the full spectrum of DILI subtypes. With this aim, we explored the utility of assessing changes in the plasma metabolomic profiles of 79 DILI patients assessed by the RUCAM (Roussel Uclaf Causality Assessment Method) score to better characterize this condition and compare results obtained with the standard clinical characterization. Through the identification of various metabolites in the plasma (including free and conjugated bile acids and glycerophospholipids), and the integration of this information into predictive models, we were able to evaluate the extent of the hepatocellular or cholestatic phenotype and to assign a numeric value with the contribution of each specific DILI sub-phenotype into the patient's general condition. Additionally, our results showed that metabolomic analysis enabled the monitoring of DILI variability responses to the same drug, the transitions between sub-phenotypes during disease progression, and identified a spectrum of residual DILI metabolic features, which can be overlooked using standard clinical diagnosis during patient follow-up.


Subject(s)
Chemical and Drug Induced Liver Injury , Cholestasis , Humans , Risk Factors , Alanine Transaminase
2.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791241

ABSTRACT

Drug induced fatty liver disease (DIFLD) is a form of drug-induced liver injury (DILI), which can also be included in the more general metabolic dysfunction-associated steatotic liver disease (MASLD), which specifically refers to the accumulation of fat in the liver unrelated to alcohol intake. A bi-directional relationship between DILI and MASLD is likely to exist: while certain drugs can cause MASLD by acting as pro-steatogenic factors, MASLD may make hepatocytes more vulnerable to drugs. Having a pre-existing MASLD significantly heightens the likelihood of experiencing DILI from certain medications. Thus, the prevalence of steatosis within DILI may be biased by pre-existing MASLD, and it can be concluded that the genuine true incidence of DIFLD in the general population remains unknown. In certain individuals, drug-induced steatosis is often accompanied by concomitant injury mechanisms such as oxidative stress, cell death, and inflammation, which leads to the development of drug-induced steatohepatitis (DISH). DISH is much more severe from the clinical point of view, has worse prognosis and outcome, and resembles MASH (metabolic-associated steatohepatitis), as it is associated with inflammation and sometimes with fibrosis. A literature review of clinical case reports allowed us to examine and evaluate the clinical features of DIFLD and their association with specific drugs, enabling us to propose a classification of DIFLD drugs based on clinical outcomes and pathological severity: Group 1, drugs with low intrinsic toxicity (e.g., ibuprofen, naproxen, acetaminophen, irinotecan, methotrexate, and tamoxifen), but expected to promote/aggravate steatosis in patients with pre-existing MASLD; Group 2, drugs associated with steatosis and only occasionally with steatohepatitis (e.g., amiodarone, valproic acid, and tetracycline); and Group 3, drugs with a great tendency to transit to steatohepatitis and further to fibrosis. Different mechanisms may be in play when identifying drug mode of action: (1) inhibition of mitochondrial fatty acid ß-oxidation; (2) inhibition of fatty acid transport across mitochondrial membranes; (3) increased de novo lipid synthesis; (4) reduction in lipid export by the inhibition of microsomal triglyceride transfer protein; (5) induction of mitochondrial permeability transition pore opening; (6) dissipation of the mitochondrial transmembrane potential; (7) impairment of the mitochondrial respiratory chain/oxidative phosphorylation; (8) mitochondrial DNA damage, degradation and depletion; and (9) nuclear receptors (NRs)/transcriptomic alterations. Currently, the majority of, if not all, adverse outcome pathways (AOPs) for steatosis in AOP-Wiki highlight the interaction with NRs or transcription factors as the key molecular initiating event (MIE). This perspective suggests that chemical-induced steatosis typically results from the interplay between a chemical and a NR or transcription factors, implying that this interaction represents the primary and pivotal MIE. However, upon conducting this exhaustive literature review, it became evident that the current AOPs tend to overly emphasize this interaction as the sole MIE. Some studies indeed support the involvement of NRs in steatosis, but others demonstrate that such NR interactions alone do not necessarily lead to steatosis. This view, ignoring other mitochondrial-related injury mechanisms, falls short in encapsulating the intricate biological mechanisms involved in chemically induced liver steatosis, necessitating their consideration as part of the AOP's map road as well.


Subject(s)
Chemical and Drug Induced Liver Injury , Fatty Liver , Humans , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/chemically induced , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/etiology , Adverse Outcome Pathways , Liver/pathology , Liver/metabolism , Liver/drug effects , Oxidative Stress
3.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999973

ABSTRACT

Several hepatic disorders are influenced by gut microbiota, but its role in idiosyncratic drug-induced liver injury (iDILI), whose main causative agent is amoxicillin-clavulanate, remains unknown. This pioneering study aims to unravel particular patterns of gut microbiota composition and associated metabolites in iDILI and iDILI patients by amoxicillin-clavulanate (iDILI-AC). Thus, serum and fecal samples from 46 patients were divided into three study groups: healthy controls (n = 10), non-iDILI acute hepatitis (n = 12) and iDILI patients (n = 24). To evaluate the amoxicillin-clavulanate effect, iDILI patients were separated into two subgroups: iDILI non-caused by amoxicillin-clavulanate (iDILI-nonAC) (n = 18) and iDILI-AC patients (n = 6). Gut microbiota composition and fecal metabolome plus serum and fecal bile acid (BA) analyses were performed, along with correlation analyses. iDILI patients presented a particular microbiome profile associated with reduced fecal secondary BAs and fecal metabolites linked to lower inflammation, such as dodecanedioic acid and pyridoxamine. Moreover, certain taxa like Barnesiella, Clostridia UCG-014 and Eubacterium spp. correlated with significant metabolites and BAs. Additionally, comparisons between iDILI-nonAC and iDILI-AC groups unraveled unique features associated with iDILI when caused by amoxicillin-clavulanate. In conclusion, specific gut microbiota profiles in iDILI and iDILI-AC patients were associated with particular metabolic and BA status, which could affect disease onset and progression.


Subject(s)
Amoxicillin-Potassium Clavulanate Combination , Bile Acids and Salts , Chemical and Drug Induced Liver Injury , Feces , Gastrointestinal Microbiome , Metabolome , Humans , Gastrointestinal Microbiome/drug effects , Feces/microbiology , Bile Acids and Salts/metabolism , Amoxicillin-Potassium Clavulanate Combination/adverse effects , Male , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Female , Metabolome/drug effects , Middle Aged , Adult , Aged
4.
Analyst ; 148(13): 3097-3106, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37313751

ABSTRACT

The assessment of liver steatosis is crucial in both hepatology and liver transplantation (LT) surgery. Steatosis can negatively impact the success of LT. Steatosis is a factor for excluding donated organs for LT, but the increasing demand for transplantable organs has led to the use of organs from marginal donors. The current standard for evaluating steatosis is a semi-quantitative grading based on the visual examination of a hematoxylin and eosin (H&E)-stained liver biopsy, but this method is time-consuming, subjective, and lacks reproducibility. Recent research has shown that infrared (IR) spectroscopy could be used as a real-time quantitative tool to assess steatosis during abdominal surgery. However, the development of IR-based methods has been hindered by the lack of appropriate quantitative reference values. In this study, we developed and validated digital image analysis methods for the quantitation of steatosis in H&E-stained liver sections using univariate and multivariate strategies including linear discriminant analysis (LDA), quadratic DA, logistic regression, partial least squares-DA (PLS-DA), and support vector machines. The analysis of 37 tissue samples with varying grades of steatosis demonstrates that digital image analysis provides accurate and reproducible reference values that improve the performance of IR spectroscopic models for steatosis quantification. A PLS model in the 1810-1052 cm-1 region using first derivative ATR-FTIR spectra provided RMSECV = 0.99%. The gained improvement in accuracy critically enhances the applicability of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to support an objective graft evaluation at the operation room, which might be especially relevant in cases of marginal liver donors to avoid unnecessary graft explantation.


Subject(s)
Fatty Liver , Humans , Spectroscopy, Fourier Transform Infrared/methods , Reproducibility of Results , Spectrophotometry, Infrared , Fatty Liver/diagnostic imaging , Fatty Liver/pathology , Discriminant Analysis , Least-Squares Analysis
5.
J Biomed Inform ; 145: 104465, 2023 09.
Article in English | MEDLINE | ID: mdl-37541407

ABSTRACT

BACKGROUND: Adverse outcome pathway (AOP) networks are versatile tools in toxicology and risk assessment that capture and visualize mechanisms driving toxicity originating from various data sources. They share a common structure consisting of a set of molecular initiating events and key events, connected by key event relationships, leading to the actual adverse outcome. AOP networks are to be considered living documents that should be frequently updated by feeding in new data. Such iterative optimization exercises are typically done manually, which not only is a time-consuming effort, but also bears the risk of overlooking critical data. The present study introduces a novel approach for AOP network optimization of a previously published AOP network on chemical-induced cholestasis using artificial intelligence to facilitate automated data collection followed by subsequent quantitative confidence assessment of molecular initiating events, key events, and key event relationships. METHODS: Artificial intelligence-assisted data collection was performed by means of the free web platform Sysrev. Confidence levels of the tailored Bradford-Hill criteria were quantified for the purpose of weight-of-evidence assessment of the optimized AOP network. Scores were calculated for biological plausibility, empirical evidence, and essentiality, and were integrated into a total key event relationship confidence value. The optimized AOP network was visualized using Cytoscape with the node size representing the incidence of the key event and the edge size indicating the total confidence in the key event relationship. RESULTS: This resulted in the identification of 38 and 135 unique key events and key event relationships, respectively. Transporter changes was the key event with the highest incidence, and formed the most confident key event relationship with the adverse outcome, cholestasis. Other important key events present in the AOP network include: nuclear receptor changes, intracellular bile acid accumulation, bile acid synthesis changes, oxidative stress, inflammation and apoptosis. CONCLUSIONS: This process led to the creation of an extensively informative AOP network focused on chemical-induced cholestasis. This optimized AOP network may serve as a mechanistic compass for the development of a battery of in vitro assays to reliably predict chemical-induced cholestatic injury.


Subject(s)
Adverse Outcome Pathways , Cholestasis , Humans , Artificial Intelligence , Cholestasis/chemically induced , Risk Assessment , Data Collection
6.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012565

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease worldwide, but a reliable non-invasive method to quantify liver steatosis in primary healthcare is not available. Circulating microRNAs have been proposed as biomarkers of severe/advanced NAFLD (steatohepatitis and fibrosis). However, the use of circulating miRNAs to quantitatively assess the % of liver fat in suspected NAFLD patients has not been investigated. We performed global miRNA sequencing in two sets of samples: human livers from organ donors (n = 20), and human sera from biopsy-proven NAFLD patients (n = 23), both with a wide range of steatosis quantified in their liver biopsies. Partial least squares (PLS) regression combined with recursive feature elimination (RFE) was used to select miRNAs associated with steatosis. Moreover, regression models with only 2 or 3 miRNAs, with high biological relevance, were built. Comprehensive microRNA sequencing of liver and serum samples resulted in two sets of abundantly expressed miRNAs (418 in liver and 351 in serum). Pearson correlation analyses indicated that 18% of miRNAs in liver and 14.5% in serum were significantly associated with the amount of liver fat. PLS-RFE models demonstrated that 50 was the number of miRNAs providing the lowest error in both liver and serum models predicting steatosis. Comparison of the two miRNA subsets showed 19 coincident miRNAs that were ranked according to biological significance (guide/passenger strand, relative abundance in liver and serum, number of predicted lipid metabolism target genes, correlation significance, etc.). Among them, miR-10a-5p, miR-98-5p, miR-19a-3p, miR-30e-5p, miR-32-5p and miR-145-5p showed the highest biological relevance. PLS regression models with serum levels of 2−3 of these miRNAs predicted the % of liver fat with errors <5%.


Subject(s)
Circulating MicroRNA , MicroRNAs , Non-alcoholic Fatty Liver Disease , Circulating MicroRNA/genetics , Circulating MicroRNA/metabolism , Humans , Lipid Metabolism , Liver/metabolism , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
7.
Anal Chem ; 92(21): 14542-14549, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33084322

ABSTRACT

The estimation of steatosis in a liver graft is mandatory prior to liver transplantation, as the risk of graft failure increases with the level of infiltrated fat. However, the assessment of liver steatosis before transplantation is typically based on a qualitative or semiquantitative characterization by visual inspection and palpation and histological analysis. Thus, there is an unmet need for transplantation surgeons to have access to a diagnostic tool enabling an in situ fast classification of grafts prior to extraction. In this study, we have assessed an attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic method compatible with the requirements of an operation room for the evaluation of the lipid contents in human livers. A set of 20 human liver biopsies obtained from organs intended for transplantation were analyzed by expert pathologists, ATR-FTIR spectroscopy, lipid biochemical analysis, and UPLC-ESI(+/-)TOFMS for lipidomic profiling. Comparative analysis of multisource data showed strong correlations between ATR-FTIR, clinical, and lipidomic information. Results show that ATR-FTIR captures a global picture of the lipid composition of the liver, along with information for the quantification of the triradylglycerol content in liver biopsies. Although the methodology performance needs to be further validated, results support the applicability of ATR-FTIR for the in situ determination of the grade of liver steatosis at the operation room as a fast, quantitative method, as an alternative to the qualitative and subjective pathological examination.


Subject(s)
Liver Transplantation , Operating Rooms , Spectrophotometry, Infrared/methods , Humans , Time Factors
8.
Arch Toxicol ; 94(2): 589-607, 2020 02.
Article in English | MEDLINE | ID: mdl-31894354

ABSTRACT

Anabolic-androgenic steroids are testosterone derivatives, used by body-builders to increase muscle mass. Epistane (EPI) is an orally administered 17α-alkylated testosterone derivative with 2a-3a epithio ring. We identified four individuals who, after EPI consumption, developed long-lasting cholestasis. The bile acid (BA) profile of three patients was characterized, as well the molecular mechanisms involved in this pathology. The serum BA pool was increased from 14 to 61-fold, basically on account of primary conjugated BA (cholic acid (CA) conjugates), whereas secondary BA were very low. In in vitro experiments with cultured human hepatocytes, EPI caused the accumulation of glycoCA in the medium. Moreover, as low as 0.01 µM EPI upregulated the expression of key BA synthesis genes (CYP7A1, by 65% and CYP8B1, by 67%) and BA transporters (NTCP, OSTA and BSEP), and downregulated FGF19. EPI increased the uptake/accumulation of a fluorescent BA analogue in hepatocytes by 50-70%. Results also evidenced, that 40 µM EPI trans-activated the nuclear receptors LXR and PXR. More importantly, 0.01 µM EPI activated AR in hepatocytes, leading to an increase in the expression of CYP8B1. In samples from a human liver bank, we proved that the expression of AR was positively correlated with that of CYP8B1 in men. Taken together, we conclude that EPI could cause cholestasis by inducing BA synthesis and favouring BA accumulation in hepatocytes, at least in part by AR activation. We anticipate that the large phenotypic variability of BA synthesis enzymes and transport genes in man provide a putative explanation for the idiosyncratic nature of EPI-induced cholestasis.


Subject(s)
Bile Acids and Salts/blood , Cholestasis/chemically induced , Hepatocytes/drug effects , Hepatocytes/metabolism , Testosterone Congeners/toxicity , Adult , Bile Acids and Salts/biosynthesis , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Cholestasis/metabolism , Cholic Acid/metabolism , Female , Fibroblast Growth Factors/genetics , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Male , Receptors, Androgen/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Steroid 12-alpha-Hydroxylase/genetics , Steroid 12-alpha-Hydroxylase/metabolism , Up-Regulation/drug effects , Young Adult
9.
Am J Pathol ; 188(12): 2800-2810, 2018 12.
Article in English | MEDLINE | ID: mdl-30248338

ABSTRACT

Hepatic vitamin D receptor (VDR) expression is increased in patients with nonalcoholic fatty liver (NAFL) and is required for liver steatosis in an NAFL mouse model. However, how hepatocyte VDR is involved in setting up steatosis remains unclear. The authors transduced human hepatocyte-derived cells with an adenoviral vector encoding human VDR and found that angiopoietin-like protein 8 (ANGPTL8) expression was increased upon VDR activation by vitamin D or lithocholic acid. The mRNA levels of hepatic VDR- and vitamin D-related genes [cytochrome P450 (CYP) 2R1, CYP27A1, and CYP3A4] were higher in NAFL patients compared with normal liver subjects. Noteworthy, hepatic ANGPTL8 mRNA and protein levels were elevated in NAFL patients, and its mRNA correlated with VDR mRNA and with the steatosis grade. Moreover, increases in serum conjugated bile acids, including the VDR agonist glycine-lithocholic acid, were observed in NAFL patients. Additionally, free fatty acids and insulin were able to up-regulate both VDR and ANGPTL8 mRNA in human hepatocytes, whereas ANGPTL8 gene knockdown attenuated free fatty acids-induced triglyceride accumulation in these cells. In conclusion, activated VDR up-regulates ANGPTL8 expression, contributing to triglyceride accumulation in human hepatocytes. Moreover, hepatic ANGPTL8 mRNA positively correlates with VDR mRNA content and the grade of steatosis in NAFL patients, suggesting that this novel pathway may play a key role in the pathogenesis of hepatosteatosis.


Subject(s)
Angiopoietin-like Proteins/metabolism , Gene Expression Regulation/drug effects , Hepatocytes/pathology , Non-alcoholic Fatty Liver Disease/pathology , Peptide Hormones/metabolism , Receptors, Calcitriol/metabolism , Adult , Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins/genetics , Case-Control Studies , Cells, Cultured , Fatty Acids, Nonesterified/pharmacology , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Insulin/pharmacology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Peptide Hormones/genetics , Receptors, Calcitriol/genetics , Triglycerides/metabolism
10.
Differentiation ; 93: 39-49, 2017.
Article in English | MEDLINE | ID: mdl-27875772

ABSTRACT

Barrett's metaplasia is the only known morphological precursor to oesophageal adenocarcinoma and is characterized by replacement of stratified squamous epithelium by columnar epithelium. The cell of origin is uncertain and the molecular mechanisms responsible for the change in cellular phenotype are poorly understood. We therefore explored the role of two transcription factors, Cdx2 and HNF4α in the conversion using primary organ cultures. Biopsy samples from cases of human Barrett's metaplasia were analysed for the presence of CDX2 and HNF4α. A new organ culture system for adult murine oesophagus is described. Using this, Cdx2 and HNF4α were ectopically expressed by adenoviral infection. The phenotype following infection was determined by a combination of PCR, immunohistochemical and morphological analyses. We demonstrate the expression of CDX2 and HNF4α in human biopsy samples. Our oesophageal organ culture system expressed markers characteristic of the normal SSQE: p63, K14, K4 and loricrin. Ectopic expression of HNF4α, but not of Cdx2 induced expression of Tff3, villin, K8 and E-cadherin. HNF4α is sufficient to induce a columnar-like phenotype in adult mouse oesophageal epithelium and is present in the human condition. These data suggest that induction of HNF4α is a key early step in the formation of Barrett's metaplasia and are consistent with an origin of Barrett's metaplasia from the oesophageal epithelium.


Subject(s)
Adenocarcinoma/genetics , Barrett Esophagus/genetics , CDX2 Transcription Factor/genetics , Esophageal Neoplasms/genetics , Hepatocyte Nuclear Factor 4/genetics , Adenocarcinoma/pathology , Adult , Animals , Barrett Esophagus/pathology , Biopsy , Epithelium/pathology , Esophageal Neoplasms/pathology , Esophagus/pathology , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Neoplasm Proteins/biosynthesis , Organ Culture Techniques
11.
J Hepatol ; 65(4): 748-757, 2016 10.
Article in English | MEDLINE | ID: mdl-27245430

ABSTRACT

BACKGROUND & AIMS: The pathogenesis and progression of non-alcoholic fatty liver disease (NAFLD) is still incompletely understood. Several nuclear receptors play a role in liver lipid metabolism and can promote hepatosteatosis, but the possible role of vitamin D receptor (VDR) in NAFLD has not been investigated. METHODS: The expression of liver VDR was investigated in apolipoprotein E knockout (apoE(-/-)) mice on a high fat diet, in wild-type mice on methionine and choline deficient diet and in NAFLD patients with hepatosteatosis and non-alcoholic steatohepatitis. The relevance of VDR was assessed in apoE(-/-) mice by deletion of VDR or paricalcitol treatment and in human HepG2 cells by VDR transfection or silencing. The role of VDR in fibrosis was also determined in VDR knockout mice (VDR(-/-)) treated with thioacetamide. RESULTS: Expression of liver VDR was markedly induced in two mouse models of NAFLD, as well as in patients with hepatosteatosis, but decreased in non-alcoholic steatohepatitis. VDR deletion in high fat diet-fed apoE(-/-) mice protected against fatty liver, dyslipidemia and insulin resistance, and caused a decrease in taurine-conjugated bile acids, but did not influence fibrosis by thioacetamide. apoE(-/-)VDR(-/-) mouse livers showed decreased gene expression of CD36, DGAT2, C/EBPα and FGF21, and increased expression of PNPLA2, LIPIN1 and PGC1α. Treatment of apoE(-/-) mice on high fat diet with paricalcitol had modest opposite effects on steatosis and gene expression. Finally, this set of genes showed concordant responses when VDR was overexpressed or silenced in HepG2 cells. CONCLUSIONS: Induced hepatocyte VDR in NAFLD regulates key hepatic lipid metabolism genes and promotes high fat diet-associated liver steatosis. Therapeutic inhibition of liver VDR may reverse steatosis in early NAFLD. LAY SUMMARY: The amount of vitamin D receptor is induced early in the livers of mice and humans when they develop non-alcoholic fatty liver disease. If the gene for the vitamin D receptor is deleted, hepatic lipid metabolism changes and mice do not accumulate fat in the liver. We conclude that the vitamin D receptor can contribute to the fatty liver disease promoted by a high fat diet.


Subject(s)
Lipid Metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Hepatocytes , Humans , Liver , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Receptors, Calcitriol
12.
Toxicol Appl Pharmacol ; 302: 1-9, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27089845

ABSTRACT

Only a few in vitro assays have been proposed to evaluate the steatotic potential of new drugs. The present study examines the utility of HepaRG cells as a cell-based assay system for screening drug-induced liver steatosis. A high-content screening assay was run to evaluate multiple toxicity-related cell parameters in HepaRG cells exposed to 28 compounds, including drugs reported to cause steatosis through different mechanisms and non-steatotic compounds. Lipid content was the most sensitive parameter for all the steatotic drugs, whereas no effects on lipid levels were produced by non-steatotic compounds. Apart from fat accumulation, increased ROS production and altered mitochondrial membrane potential were also found in the cells exposed to steatotic drugs, which indicates that all these cellular events contributed to drug-induced hepatotoxicity. These findings are of clinical relevance as most effects were observed at drug concentrations under 100-fold of the therapeutic peak plasmatic concentration. HepaRG cells showed increased lipid overaccumulation vs. HepG2 cells, which suggests greater sensitivity to drug-induced steatosis. An altered expression profile of transcription factors and the genes that code key proteins in lipid metabolism was also found in the cells exposed to drugs capable of inducing liver steatosis. Our results generally indicate the value of HepaRG cells for assessing the risk of liver damage associated with steatogenic compounds and for investigating the molecular mechanisms involved in drug-induced steatosis.


Subject(s)
Drug Evaluation, Preclinical/methods , Fatty Liver/chemically induced , Cell Line, Tumor , Drug-Related Side Effects and Adverse Reactions , Humans , Lipid Metabolism/genetics
13.
Mol Pharmacol ; 87(4): 582-94, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25576488

ABSTRACT

The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-deficient mice), and nutritional (mice fed a methionine- and choline-deficient diet). Among the different transcription factors investigated, CCAAT-enhancer-binding protein α (C/EBPα) showed the strongest dominant-repressive effect on SHP expression in HepG2 and human hepatocytes. Reporter assays revealed that the inhibitory effect of C/EBPα and steatotic drugs colocalize between -340 and -509 base pair of the SHP promoter, and mutation of a predicted C/EBPα response element at -473 base pair abolished SHP repression by both C/EBPα and drugs. Moreover, inhibition of major stress signaling pathways demonstrated that the mitogen-activated protein kinase kinase 1/2 pathway activates, while the phosphatidylinositol 3 kinase pathway represses SHP in a C/EBP-dependent manner. We conclude that SHP is downregulated by several steatotic drugs and in advanced NAFLD. These conditions can activate signals that target C/EBPα and consequently repress SHP, thus favoring the progression and severity of NAFLD.


Subject(s)
Fatty Liver/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cells, Cultured , Cyclosporine/toxicity , Doxycycline/toxicity , Fatty Liver/chemically induced , Humans , Male , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Promoter Regions, Genetic , Receptors, Cytoplasmic and Nuclear/genetics , Signal Transduction , Tetracycline/toxicity , Thiazepines/toxicity , Transcription, Genetic , Valproic Acid/toxicity
14.
Biochim Biophys Acta ; 1831(4): 803-18, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23318274

ABSTRACT

Liver fatty acid binding protein (FABP1) prevents lipotoxicity of free fatty acids and regulates fatty acid trafficking and partition. Our objective is to investigate the transcription factors controlling the human FABP1 gene and their regulation in nonalcoholic fatty liver disease (NAFLD). Adenovirus-mediated expression of multiple transcription factors in HepG2 cells and cultured human hepatocytes demonstrated that FOXA1 and PPARα are among the most effective activators of human FABP1, whereas C/EBPα is a major dominant repressor. Moreover, FOXA1 and PPARα induced re-distribution of FABP1 protein and increased cytoplasmic expression. Reporter assays demonstrated that the major basal activity of the human FABP1 promoter locates between -96 and -229bp, where C/EBPα binds to a composite DR1-C/EBP element. Mutation of this element at -123bp diminished basal reporter activity, abolished repression by C/EBPα and reduced transactivation by HNF4α. Moreover, HNF4α gene silencing by shRNA in HepG2 cells caused a significant down-regulation of FABP1 mRNA expression. FOXA1 activated the FABP1 promoter through binding to a cluster of elements between -229 and -592bp, whereas PPARα operated through a conserved proximal element at -59bp. Finally, FABP1, FOXA1 and PPARα were concomitantly repressed in animal models of NAFLD and in human nonalcoholic fatty livers, whereas C/EBPα was induced or did not change. We conclude that human FABP1 has a complex mechanism of regulation where C/EBPα displaces HNF4α and hampers activation by FOXA1 and PPARα. Alteration of expression of these transcription factors in NAFLD leads to FABP1 gen repression and could exacerbate lipotoxicity and disease progression.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Liver/metabolism , Fatty Liver/therapy , Hepatocyte Nuclear Factor 3-alpha/metabolism , PPAR alpha/metabolism , Animals , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cells, Cultured , Fatty Acid-Binding Proteins/genetics , Fatty Liver/genetics , Hep G2 Cells , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , PPAR alpha/genetics , Protein Binding
15.
Lab Invest ; 94(3): 262-74, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24492281

ABSTRACT

There is experimental evidence that some antioxidant flavonoids show therapeutic potential in the treatment of hepatitis C through inhibition of hepatitis C virus (HCV) replication. We examined the effect of treatment with the flavonols quercetin and kaempferol, the flavanone taxifolin and the flavone apigenin on HCV replication efficiency in an in vitro model. While all flavonoids studied were able to reduce viral replication at very low concentrations (ranging from 0.1 to 5 µM), quercetin appeared to be the most effective inhibitor of HCV replication, showing a marked anti-HCV activity in replicon-containing cells when combined with interferon (IFN)α. The contribution of oxidative/nitrosative stress and lipogenesis modulation to inhibition of HCV replication by quercetin was also examined. As expected, quercetin decreased HCV-induced reactive oxygen and nitrogen species (ROS/RNS) generation and lipoperoxidation in replicating cells. Quercetin also inhibited liver X receptor (LXR)α-induced lipid accumulation in LXRα-overexpressing and replicon-containing Huh7 cells. The mechanism underlying the LXRα-dependent lipogenesis modulatory effect of quercetin in HCV-replicating cells seems to involve phosphatidylinositol 3-kinase (PI3K)/AKT pathway inactivation. Thus, inhibition of the PI3K pathway by LY294002 attenuated LXRα upregulation and HCV replication mediated by lipid accumulation, showing an additive effect when combined with quercetin. Inactivation of the PI3K pathway by quercetin may contribute to the repression of LXRα-dependent lipogenesis and to the inhibition of viral replication induced by the flavonol. Combined, our data suggest that oxidative/nitrosative stress blockage and subsequent modulation of PI3K-LXRα-mediated lipogenesis might contribute to the inhibitory effect of quercetin on HCV replication.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepacivirus/physiology , Orphan Nuclear Receptors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Quercetin/pharmacology , Virus Replication/drug effects , Antioxidants/pharmacology , Apigenin/pharmacology , Cell Line , Chromones/pharmacology , Down-Regulation/drug effects , Fatty Acids, Nonesterified/metabolism , Humans , Kaempferols/pharmacology , Lipogenesis/drug effects , Lipogenesis/genetics , Liver X Receptors , Morpholines/pharmacology , Orphan Nuclear Receptors/genetics , Oxidative Stress/drug effects , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/analogs & derivatives , Reactive Nitrogen Species/metabolism , Signal Transduction/drug effects , Triglycerides/metabolism
16.
Arch Toxicol ; 88(4): 967-82, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24469900

ABSTRACT

It is estimated that only a few marketed drugs are able to directly induce liver steatosis. However, many other drugs may exacerbate or precipitate fatty liver in the presence of other risk factors or in patients prone to non-alcoholic fatty liver disease. On the other hand, current in vitro tests for drug-induced steatosis in preclinical research are scarce and not very sensitive or reproducible. In the present study, we have investigated the effect of well-characterized steatotic drugs on the expression profile of 47 transcription factors (TFs) in human hepatoma HepG2 cells and found that these drugs are able to up- and down-regulate a substantial number of these factors. Multivariate data analysis revealed a common TF signature for steatotic drugs, which consistently and significantly repressed FOXA1, HEX and SREBP1C in cultured cells. This signature was also observed in the livers of rats and in cultured human hepatocytes. Therefore, we selected these three TFs as predictive biomarkers for iatrogenic steatosis. With these biomarkers, a logistic regression analysis yielded a predictive model, which was able to correctly classify 92 % of drugs. The developed algorithm also predicted that ibuprofen, nifedipine and irinotecan are potential steatotic drugs, whereas troglitazone is not. In summary, this is a sensitive, specific and simple RT-PCR test that can be easily implemented in preclinical drug development to predict drug-induced steatosis. Our results also indicate that steatotic drugs affect expression of both common and specific subsets of TF and lipid metabolism genes, thus generating complex transcriptomic responses that cause or contribute to steatosis in hepatocytes.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Gene Expression Profiling , Liver/drug effects , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Toxicogenetics/methods , Transcription Factors/genetics , Aged , Algorithms , Animals , Disease Models, Animal , Gene Expression Regulation/drug effects , Genetic Markers , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/metabolism , Logistic Models , Male , Middle Aged , Multivariate Analysis , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Risk Assessment , Transcription Factors/metabolism
17.
Biomed Pharmacother ; 174: 116530, 2024 May.
Article in English | MEDLINE | ID: mdl-38574623

ABSTRACT

BACKGROUND: Serum transaminases, alkaline phosphatase and bilirubin are common parameters used for DILI diagnosis, classification, and prognosis. However, the relevance of clinical examination, histopathology and drug chemical properties have not been fully investigated. As cholestasis is a frequent and complex DILI manifestation, our goal was to investigate the relevance of clinical features and drug properties to stratify drug-induced cholestasis (DIC) patients, and to develop a prognosis model to identify patients at risk and high-concern drugs. METHODS: DIC-related articles were searched by keywords and Boolean operators in seven databases. Relevant articles were uploaded onto Sysrev, a machine-learning based platform for article review and data extraction. Demographic, clinical, biochemical, and liver histopathological data were collected. Drug properties were obtained from databases or QSAR modelling. Statistical analyses and logistic regressions were performed. RESULTS: Data from 432 DIC patients associated with 52 drugs were collected. Fibrosis strongly associated with fatality, whereas canalicular paucity and ALP associated with chronicity. Drugs causing cholestasis clustered in three major groups. The pure cholestatic pattern divided into two subphenotypes with differences in prognosis, canalicular paucity, fibrosis, ALP and bilirubin. A predictive model of DIC outcome based on non-invasive parameters and drug properties was developed. Results demonstrate that physicochemical (pKa-a) and pharmacokinetic (bioavailability, CYP2C9) attributes impinged on the DIC phenotype and allowed the identification of high-concern drugs. CONCLUSIONS: We identified novel associations among DIC manifestations and disclosed novel DIC subphenotypes with specific clinical and chemical traits. The developed predictive DIC outcome model could facilitate DIC prognosis in clinical practice and drug categorization.


Subject(s)
Cholestasis , Machine Learning , Phenotype , Humans , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Cholestasis/chemically induced , Databases, Factual , Prognosis
18.
Toxicology ; 505: 153814, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677583

ABSTRACT

The field of chemical toxicity testing is undergoing a transition to overcome the limitations of in vivo experiments. This evolution involves implementing innovative non-animal approaches to improve predictability and provide a more precise understanding of toxicity mechanisms. Adverse outcome pathway (AOP) networks are pivotal in organizing existing mechanistic knowledge related to toxicological processes. However, these AOP networks are dynamic and require regular updates to incorporate the latest data. Regulatory challenges also persist due to concerns about the reliability of the information they offer. This study introduces a generic Weight-of-Evidence (WoE) scoring method, aligned with the tailored Bradford-Hill criteria, to quantitatively assess the confidence levels in key event relationships (KERs) within AOP networks. We use the previously published AOP network on chemical-induced liver steatosis, a prevalent form of human liver injury, as a case study. Initially, the existing AOP network is optimized with the latest scientific information extracted from PubMed using the free SysRev platform for artificial intelligence (AI)-based abstract inclusion and standardized data collection. The resulting optimized AOP network, constructed using Cytoscape, visually represents confidence levels through node size (key event, KE) and edge thickness (KERs). Additionally, a Shiny application is developed to facilitate user interaction with the dataset, promoting future updates. Our analysis of 173 research papers yielded 100 unique KEs and 221 KERs among which 72 KEs and 170 KERs, respectively, have not been previously documented in the prior AOP network or AOP-wiki. Notably, modifications in de novo lipogenesis, fatty acid uptake and mitochondrial beta-oxidation, leading to lipid accumulation and liver steatosis, garnered the highest KER confidence scores. In conclusion, our study delivers a generic methodology for developing and assessing AOP networks. The quantitative WoE scoring method facilitates in determining the level of support for KERs within the optimized AOP network, offering valuable insights into its utility in both scientific research and regulatory contexts. KERs supported by robust evidence represent promising candidates for inclusion in an in vitro test battery for reliably predicting chemical-induced liver steatosis within regulatory frameworks.


Subject(s)
Adverse Outcome Pathways , Fatty Liver , Humans , Fatty Liver/chemically induced , Animals , Chemical and Drug Induced Liver Injury/etiology , Toxicity Tests/methods , Artificial Intelligence
19.
JHEP Rep ; 6(1): 100918, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38192540

ABSTRACT

Background & Aims: Current therapies for the treatment of alcohol-related liver disease (ALD) have proven largely ineffective. Patients relapse and the disease progresses even after liver transplantation. Altered epigenetic mechanisms are characteristic of alcohol metabolism given excessive acetate and NAD depletion and play an important role in liver injury. In this regard, novel therapeutic approaches based on epigenetic modulators are increasingly proposed. MicroRNAs, epigenetic modulators acting at the post-transcriptional level, appear to be promising new targets for the treatment of ALD. Methods: MiR-873-5p levels were measured in 23 liver tissue from Patients with ALD, and GNMT levels during ALD were confirmed using expression databases (transcriptome n = 62, proteome n = 68). High-resolution proteomics and metabolomics in mice following the Gao-binge model were used to investigate miR-873-5p expression in ALD. Hepatocytes exposed to 50 mM alcohol for 12 h were used to study toxicity. The effect of anti-miR-873-5p in the treatment outcomes of ALD was investigated. Results: The analysis of human and preclinical ALD samples revealed increased expression of miR-873-5p in the liver. Interestingly, there was an inverse correlation with NNMT, suggesting a novel mechanism for NAD depletion and aberrant acetylation during ALD progression. High-resolution proteomics and metabolomics identified miR-873-5p as a key regulator of NAD metabolism and SIRT1 deacetylase activity. Anti-miR-873-5p reduced NNMT activity, fuelled the NAD salvage pathway, restored the acetylome, and modulated the levels of NF-κB and FXR, two known SIRT1 substrates, thereby protecting the liver from apoptotic and inflammatory processes, and improving bile acid homeostasis. Conclusions: These data indicate that targeting miR-873-5p, a repressor of GNMT previously associated with NAFLD and acetaminophen-induced liver failure. is a novel and attractive approach to treating alcohol-induced hepatoxicity. Impact and implications: The role of miR-873-5p has not been explicitly examined in the progression of ALD, a pathology with no therapeutic options. In this study, inhibiting miR-873-5p exerted hepatoprotective effects against ALD through rescued SIRT1 activity and consequently restored bile acid homeostasis and attenuated the inflammatory response. Targeting hepatic miR-873-5p may represent a novel therapeutic approach for the treatment of ALD.

20.
Nutrients ; 15(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513605

ABSTRACT

Bariatric surgery (BS) has several benefits, including resolution of non-alcoholic fatty liver disease (NAFLD) in many patients. However, a significant percentage of patients do not experience improvement in fatty liver after BS, and more than 10% develop new or worsening NAFLD features. Therefore, a question that remains unanswered is why some patients experience resolved NAFLD after BS and others do not. In this study, we investigated the fecal microbiota and plasma bile acids associated with NAFLD resolution in twelve morbidly obese patients undergoing BS, of whom six resolved their steatosis one year after surgery and another six did not. Results indicate that the hallmark of the gut microbiota in responder patients is a greater abundance of Bacteroides, Akkermansia, and several species of the Clostridia class (genera: Blautia, Faecalibacterium, Roseburia, Butyricicoccusa, and Clostridium), along with a decreased abundance of Actinomycetes/Bifidobacterium and Faecalicatena. NAFLD resolution was also associated with a sustained increase in primary bile acids (particularly non-conjugated), which likely results from a reduction in bacterial gut species capable of generating secondary bile acids. We conclude that there are specific changes in gut microbiota and plasma bile acids that could contribute to resolving NAFLD in BS patients. The knowledge acquired can help to design interventions with prebiotics and/or probiotics to promote a gut microbiome that favors NAFLD resolution.


Subject(s)
Bariatric Surgery , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Humans , Non-alcoholic Fatty Liver Disease/microbiology , Bile Acids and Salts , Obesity, Morbid/surgery , Liver
SELECTION OF CITATIONS
SEARCH DETAIL