Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1853(3): 619-31, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25549939

ABSTRACT

Cystamine and its reduced form cysteamine showed protective effects in various models of neurodegenerative disease, including Huntington's disease and Parkinson's disease. Other lines of evidence demonstrated the cytotoxic effect of cysteamine on duodenal mucosa leading to ulcer development. However, the mechanism for cystamine cytotoxicity remains poorly understood. Here, we report a new pathway in which cystamine induces apoptosis by targeting apoptosis-inducing factor (AIF). By screening of various cell lines, we observed that cystamine and cysteamine induce cell death in a cell type-specific manner. Comparison between cystamine-sensitive and cystamine-resistant cell lines revealed that cystamine cytotoxicity is not associated with unfolded protein response, reactive oxygen species generation and transglutaminase or caspase activity; rather, it is associated with the ability of cystamine to trigger AIF nuclear translocation. In cystamine-sensitive cells, cystamine suppresses the levels of intracellular glutathione by inhibiting γ-glutamylcysteine synthetase expression that triggers AIF translocation. Conversely, glutathione supplementation completely prevents cystamine-induced AIF translocation and apoptosis. In rats, cysteamine administration induces glutathione depletion and AIF translocation leading to apoptosis of duodenal epithelium. These results indicate that AIF translocation through glutathione depletion is the molecular mechanism of cystamine toxicity, and provide important implications for cystamine in the neurodegenerative disease therapeutics as well as in the regulation of AIF-mediated cell death.


Subject(s)
Apoptosis Inducing Factor/physiology , Apoptosis/drug effects , Cystamine/pharmacology , Glutathione/metabolism , Animals , Apoptosis/genetics , Duodenal Ulcer/metabolism , Duodenal Ulcer/pathology , Female , HeLa Cells , Humans , MCF-7 Cells , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured , Up-Regulation/drug effects
2.
Arch Pharm Res ; 40(6): 772-782, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28593550

ABSTRACT

G-protein-coupled receptor 119 (GPR119) represents a promising target for the treatment of type 2 diabetes as it can increase both GLP-1 secretion from intestinal L cells and glucose-stimulated insulin secretion (GSIS) from pancreatic ß cells. Due to this dual mechanism of action, the development of small molecule GPR119 agonists has received much interest for the treatment of type 2 diabetes. Here, we identified a novel small-molecule GPR119 agonist, YH18421 and evaluated its therapeutic potential. YH18421 specifically activated human GPR119 with high potency and potentiated GLP-1 secretion and GSIS in vitro cell based systems. In normal mice, single oral administration of YH18421 improved glucose tolerance. Combined treatment of YH18421 and the DPP-4 inhibitor augmented both plasma active GLP-1 levels and glycemic control. In diet induced obese (DIO) mice model, glucose lowering effect of YH18421 was maintained after 4 weeks of repeat dosing and YH18421 acted additively with DPP-IV inhibitor. We also observed that YH18421 inhibited weight gain during 4 weeks of administration in DIO mice. These data demonstrate that YH18421 is capable of delivering sustained glucose control and preventing weight gain and combination with the DPP-IV inhibitor maybe an effective strategy for the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Glucose/antagonists & inhibitors , Receptors, G-Protein-Coupled/agonists , Weight Loss/drug effects , Animals , Cells, Cultured , Diabetes Mellitus, Experimental/chemically induced , Glucose/metabolism , Humans , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL