Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 403
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 37: 145-171, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30526160

ABSTRACT

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Immunotherapy, Adoptive/trends , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/physiology , Animals , Genetic Engineering , Humans , Neoplasms/immunology , T-Lymphocytes/transplantation , United States , United States Food and Drug Administration
2.
Cell ; 186(21): 4567-4582.e20, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37794590

ABSTRACT

CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the targeted chromosome, including in preclinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells (NCT03399448), reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.


Subject(s)
CRISPR-Cas Systems , Chromosome Aberrations , Gene Editing , T-Lymphocytes , Humans , Chromosomes , CRISPR-Cas Systems/genetics , DNA Damage , Gene Editing/methods , Clinical Trials as Topic
3.
Cell ; 185(24): 4471-4473, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36423579

ABSTRACT

CAR T therapy has revolutionized the treatment of hematologic cancers. In their recent Nature Medicine paper, Mackensen et al. report the use of CAR T cells to treat systemic lupus erythematosus in five patients. This provides enthusiasm to further explore CAR T therapy beyond oncology.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Receptors, Chimeric Antigen , Humans , Autoimmune Diseases/therapy , Lupus Erythematosus, Systemic/drug therapy
4.
Annu Rev Immunol ; 32: 189-225, 2014.
Article in English | MEDLINE | ID: mdl-24423116

ABSTRACT

Adoptive immunotherapy, or the infusion of lymphocytes, is a promising approach for the treatment of cancer and certain chronic viral infections. The application of the principles of synthetic biology to enhance T cell function has resulted in substantial increases in clinical efficacy. The primary challenge to the field is to identify tumor-specific targets to avoid off-tumor, on-target toxicity. Given recent advances in efficacy in numerous pilot trials, the next steps in clinical development will require multicenter trials to establish adoptive immunotherapy as a mainstream technology.


Subject(s)
Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy , Virus Diseases/immunology , Virus Diseases/therapy , Adoptive Transfer , Animals , Antigens/genetics , Antigens/immunology , Biomarkers , Cell- and Tissue-Based Therapy , Gene Transfer Techniques , Genetic Therapy , Humans , Neoplasms/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transduction, Genetic , Virus Diseases/genetics
5.
Cell ; 184(19): 4981-4995.e14, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34464586

ABSTRACT

Poor tumor infiltration, development of exhaustion, and antigen insufficiency are common mechanisms that limit chimeric antigen receptor (CAR)-T cell efficacy. Delivery of pattern recognition receptor agonists is one strategy to improve immune function; however, targeting these agonists to immune cells is challenging, and off-target signaling in cancer cells can be detrimental. Here, we engineer CAR-T cells to deliver RN7SL1, an endogenous RNA that activates RIG-I/MDA5 signaling. RN7SL1 promotes expansion and effector-memory differentiation of CAR-T cells. Moreover, RN7SL1 is deployed in extracellular vesicles and selectively transferred to immune cells. Unlike other RNA agonists, transferred RN7SL1 restricts myeloid-derived suppressor cell (MDSC) development, decreases TGFB in myeloid cells, and fosters dendritic cell (DC) subsets with costimulatory features. Consequently, endogenous effector-memory and tumor-specific T cells also expand, allowing rejection of solid tumors with CAR antigen loss. Supported by improved endogenous immunity, CAR-T cells can now co-deploy peptide antigens with RN7SL1 to enhance efficacy, even when heterogenous CAR antigen tumors lack adequate neoantigens.


Subject(s)
Immunologic Factors/pharmacology , RNA/pharmacology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , DEAD Box Protein 58/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Immunity/drug effects , Immunocompetence , Immunologic Memory , Immunotherapy , Interferons/metabolism , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Peptides/metabolism , Receptors, Pattern Recognition/metabolism , T-Lymphocytes/drug effects
6.
Cell ; 184(25): 6081-6100.e26, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34861191

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Pancreatic Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Line, Tumor , HEK293 Cells , Humans , Inhibitor of Differentiation Proteins/immunology , Male , Mice , Mice, Knockout , Mice, Nude , Mice, SCID , Neoplasm Proteins/immunology , SOXC Transcription Factors/immunology
7.
Cell ; 183(1): 126-142.e17, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32961131

ABSTRACT

CD19-directed immunotherapies are clinically effective for treating B cell malignancies but also cause a high incidence of neurotoxicity. A subset of patients treated with chimeric antigen receptor (CAR) T cells or bispecific T cell engager (BiTE) antibodies display severe neurotoxicity, including fatal cerebral edema associated with T cell infiltration into the brain. Here, we report that mural cells, which surround the endothelium and are critical for blood-brain-barrier integrity, express CD19. We identify CD19 expression in brain mural cells using single-cell RNA sequencing data and confirm perivascular staining at the protein level. CD19 expression in the brain begins early in development alongside the emergence of mural cell lineages and persists throughout adulthood across brain regions. Mouse mural cells demonstrate lower levels of Cd19 expression, suggesting limitations in preclinical animal models of neurotoxicity. These data suggest an on-target mechanism for neurotoxicity in CD19-directed therapies and highlight the utility of human single-cell atlases for designing immunotherapies.


Subject(s)
Blood-Brain Barrier/metabolism , Epithelial Cells/metabolism , Immunotherapy, Adoptive/adverse effects , Animals , Antibodies, Bispecific/immunology , Antigens, CD19/immunology , B-Lymphocytes/immunology , Blood-Brain Barrier/immunology , Brain/immunology , Brain/metabolism , Cell Line, Tumor , Cytotoxicity, Immunologic , Humans , Immunotherapy/adverse effects , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Mice , Mice, Inbred NOD , Mice, SCID , Muscle, Smooth, Vascular/metabolism , Neoplasms , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Single-Cell Analysis/methods , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
8.
Cell ; 178(4): 933-948.e14, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398344

ABSTRACT

Interferon-gamma (IFNG) augments immune function yet promotes T cell exhaustion through PDL1. How these opposing effects are integrated to impact immune checkpoint blockade (ICB) is unclear. We show that while inhibiting tumor IFNG signaling decreases interferon-stimulated genes (ISGs) in cancer cells, it increases ISGs in immune cells by enhancing IFNG produced by exhausted T cells (TEX). In tumors with favorable antigenicity, these TEX mediate rejection. In tumors with neoantigen or MHC-I loss, TEX instead utilize IFNG to drive maturation of innate immune cells, including a PD1+TRAIL+ ILC1 population. By disabling an inhibitory circuit impacting PD1 and TRAIL, blocking tumor IFNG signaling promotes innate immune killing. Thus, interferon signaling in cancer cells and immune cells oppose each other to establish a regulatory relationship that limits both adaptive and innate immune killing. In melanoma and lung cancer patients, perturbation of this relationship is associated with ICB response independent of tumor mutational burden.


Subject(s)
Adaptive Immunity/immunology , Immunity, Innate/immunology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lung Neoplasms/immunology , Melanoma/immunology , Adoptive Transfer , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Cohort Studies , Female , Gene Knockout Techniques , Humans , Interferon-gamma/antagonists & inhibitors , Killer Cells, Natural/immunology , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Progression-Free Survival , RNA-Seq , Transfection
9.
Immunity ; 56(10): 2388-2407.e9, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37776850

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy. Importantly, this effect was specific to CTLA4 and not seen upon deletion of CTLA4 and/or PDCD1 in CAR T cells. Mechanistically, CTLA4 deficiency permitted unopposed CD28 signaling and maintenance of CAR expression on the T cell surface under conditions of high antigen load. In clinical studies, deletion of CTLA4 rescued the function of T cells from patients with leukemia that previously failed CAR T cell treatment. Thus, selective deletion of CTLA4 reinvigorates dysfunctional chronic lymphocytic leukemia (CLL) patient T cells, providing a strategy for increasing patient responses to CAR T cell therapy.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Chimeric Antigen , Humans , Receptors, Antigen, T-Cell/metabolism , CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , T-Lymphocytes , Immunotherapy, Adoptive , Antigens, CD19
10.
Cell ; 168(4): 724-740, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28187291

ABSTRACT

Chimeric antigen receptor (CAR) T cells have proven that engineered immune cells can serve as a powerful new class of cancer therapeutics. Clinical experience has helped to define the major challenges that must be met to make engineered T cells a reliable, safe, and effective platform that can be deployed against a broad range of tumors. The emergence of synthetic biology approaches for cellular engineering is providing us with a broadly expanded set of tools for programming immune cells. We discuss how these tools could be used to design the next generation of smart T cell precision therapeutics.


Subject(s)
Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/cytology , Animals , Antigens, CD19/analysis , Cell Engineering/methods , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Precision Medicine , Receptors, Antigen, T-Cell/immunology , Synthetic Biology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment
11.
Immunity ; 55(3): 557-574.e7, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263570

ABSTRACT

The clinical benefit of T cell immunotherapies remains limited by incomplete understanding of T cell differentiation and dysfunction. We generated an epigenetic and transcriptional atlas of T cell differentiation from healthy humans that included exhausted CD8 T cells and applied this resource in three ways. First, we identified modules of gene expression and chromatin accessibility, revealing molecular coordination of differentiation after activation and between central memory and effector memory. Second, we applied this healthy molecular framework to three settings-a neoadjuvant anti-PD1 melanoma trial, a basal cell carcinoma scATAC-seq dataset, and autoimmune disease-associated SNPs-yielding insights into disease-specific biology. Third, we predicted genome-wide cis-regulatory elements and validated this approach for key effector genes using CRISPR interference, providing functional annotation and demonstrating the ability to identify targets for non-coding cellular engineering. These studies define epigenetic and transcriptional regulation of human T cells and illustrate the utility of interrogating disease in the context of a healthy T cell atlas.


Subject(s)
Epigenomics , Lymphocyte Activation , CD8-Positive T-Lymphocytes , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic , Humans , Lymphocyte Activation/genetics
12.
Nature ; 619(7971): 707-715, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37495877

ABSTRACT

Engineering a patient's own T cells to selectively target and eliminate tumour cells has cured patients with untreatable haematologic cancers. These results have energized the field to apply chimaeric antigen receptor (CAR) T therapy throughout oncology. However, evidence from clinical and preclinical studies underscores the potential of CAR T therapy beyond oncology in treating autoimmunity, chronic infections, cardiac fibrosis, senescence-associated disease and other conditions. Concurrently, the deployment of new technologies and platforms provides further opportunity for the application of CAR T therapy to noncancerous pathologies. Here we review the rationale behind CAR T therapy, current challenges faced in oncology, a synopsis of preliminary reports in noncancerous diseases, and a discussion of relevant emerging technologies. We examine potential applications for this therapy in a wide range of contexts. Last, we highlight concerns regarding specificity and safety and outline the path forward for CAR T therapy beyond cancer.


Subject(s)
Aging , Autoimmune Diseases , Fibrosis , Heart Diseases , Immunotherapy, Adoptive , Infections , Neoplasms , Receptors, Chimeric Antigen , Humans , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/trends , Neoplasms/immunology , Neoplasms/therapy , Receptors, Chimeric Antigen/therapeutic use , T-Lymphocytes/immunology , Autoimmune Diseases/therapy , Infections/therapy , Fibrosis/therapy , Aging/pathology , Heart Diseases/therapy
13.
Nature ; 607(7918): 360-365, 2022 07.
Article in English | MEDLINE | ID: mdl-35676488

ABSTRACT

Synthetic receptor signalling has the potential to endow adoptively transferred T cells with new functions that overcome major barriers in the treatment of solid tumours, including the need for conditioning chemotherapy1,2. Here we designed chimeric receptors that have an orthogonal IL-2 receptor extracellular domain (ECD) fused with the intracellular domain (ICD) of receptors for common γ-chain (γc) cytokines IL-4, IL-7, IL-9 and IL-21 such that the orthogonal IL-2 cytokine elicits the corresponding γc cytokine signal. Of these, T cells that signal through the chimeric orthogonal IL-2Rß-ECD-IL-9R-ICD (o9R) are distinguished by the concomitant activation of STAT1, STAT3 and STAT5 and assume characteristics of stem cell memory and effector T cells. Compared to o2R T cells, o9R T cells have superior anti-tumour efficacy in two recalcitrant syngeneic mouse solid tumour models of melanoma and pancreatic cancer and are effective even in the absence of conditioning lymphodepletion. Therefore, by repurposing IL-9R signalling using a chimeric orthogonal cytokine receptor, T cells gain new functions, and this results in improved anti-tumour activity for hard-to-treat solid tumours.


Subject(s)
Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Interleukin Receptor Common gamma Subunit , Neoplasms , Receptors, Interleukin-9 , Recombinant Fusion Proteins , T-Lymphocytes , Animals , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Interleukins/genetics , Interleukins/immunology , Melanoma/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Pancreatic Neoplasms/immunology , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , STAT Transcription Factors/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
14.
Nature ; 602(7897): 503-509, 2022 02.
Article in English | MEDLINE | ID: mdl-35110735

ABSTRACT

The adoptive transfer of T lymphocytes reprogrammed to target tumour cells has demonstrated potential for treatment of various cancers1-7. However, little is known about the long-term potential and clonal stability of the infused cells. Here we studied long-lasting CD19-redirected chimeric antigen receptor (CAR) T cells in two patients with chronic lymphocytic leukaemia1-4 who achieved a complete remission in 2010. CAR T cells remained detectable more than ten years after infusion, with sustained remission in both patients. Notably, a highly activated CD4+ population emerged in both patients, dominating the CAR T cell population at the later time points. This transition was reflected in the stabilization of the clonal make-up of CAR T cells with a repertoire dominated by a small number of clones. Single-cell profiling demonstrated that these long-persisting CD4+ CAR T cells exhibited cytotoxic characteristics along with ongoing functional activation and proliferation. In addition, longitudinal profiling revealed a population of gamma delta CAR T cells that prominently expanded in one patient concomitant with CD8+ CAR T cells during the initial response phase. Our identification and characterization of these unexpected CAR T cell populations provide novel insight into the CAR T cell characteristics associated with anti-cancer response and long-term remission in leukaemia.


Subject(s)
CD4-Positive T-Lymphocytes , Immunotherapy, Adoptive , Leukemia , Receptors, Chimeric Antigen , Antigens, CD19/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Separation , Humans , Leukemia/immunology , Leukemia/therapy , Receptors, Chimeric Antigen/immunology , Time Factors
15.
Semin Immunol ; 70: 101840, 2023 11.
Article in English | MEDLINE | ID: mdl-37729825

ABSTRACT

Population aging, a pervasive global demographic trend, is anticipated to challenge health and social systems worldwide. This phenomenon is due to medical advancements enabling longer lifespans, with 20% of the US population soon to be over 65 years old. Consequently, there will be a surge in age-related diseases. Senescence, characterized by the loss of biological maintenance and homeostasis at molecular and cellular levels, either correlates with or directly causes age-related phenotypic changes. Decline of the immune system is a critical factor in the senescence process, with cancer being a primary cause of death in elderly populations. Chimeric antigen receptor (CAR) T cell therapy, an innovative approach, has demonstrated success mainly in pediatric and young adult hematological malignancies but remains largely ineffective for diseases affecting older populations, such as late-in-life B cell malignancies and most solid tumor indications. This limitation arises because CAR T cell efficacy heavily relies on the fitness of the patient-derived starting T cell material. Numerous studies suggest that T cell senescence may be a key driver of CAR T cell deficiency. This review examines correlates and underlying factors associated with favorable CAR T cell outcomes and explores potential experimental and clinically actionable strategies for T cell rejuvenation.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , Adolescent , Humans , Child , Aged , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes , Immunotherapy, Adoptive , Aging
16.
Proc Natl Acad Sci U S A ; 121(13): e2319856121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513098

ABSTRACT

The use of lipid nanoparticles (LNP) to encapsulate and deliver mRNA has become an important therapeutic advance. In addition to vaccines, LNP-mRNA can be used in many other applications. For example, targeting the LNP with anti-CD5 antibodies (CD5/tLNP) can allow for efficient delivery of mRNA payloads to T cells to express protein. As the percentage of protein expressing T cells induced by an intravenous injection of CD5/tLNP is relatively low (4-20%), our goal was to find ways to increase mRNA-induced translation efficiency. We showed that T cell activation using an anti-CD3 antibody improved protein expression after CD5/tLNP transfection in vitro but not in vivo. T cell health and activation can be increased with cytokines, therefore, using mCherry mRNA as a reporter, we found that culturing either mouse or human T cells with the cytokine IL7 significantly improved protein expression of delivered mRNA in both CD4+ and CD8+ T cells in vitro. By pre-treating mice with systemic IL7 followed by tLNP administration, we observed significantly increased mCherry protein expression by T cells in vivo. Transcriptomic analysis of mouse T cells treated with IL7 in vitro revealed enhanced genomic pathways associated with protein translation. Improved translational ability was demonstrated by showing increased levels of protein expression after electroporation with mCherry mRNA in T cells cultured in the presence of IL7, but not with IL2 or IL15. These data show that IL7 selectively increases protein translation in T cells, and this property can be used to improve expression of tLNP-delivered mRNA in vivo.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Interleukin-7 , Liposomes , Nanoparticles , Protein Biosynthesis , RNA, Messenger , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Interleukin-7/pharmacology , Protein Biosynthesis/drug effects , RNA, Messenger/metabolism , Mice, Inbred C57BL , Cells, Cultured , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology
17.
Proc Natl Acad Sci U S A ; 121(10): e2317735121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408246

ABSTRACT

Chimeric antigen receptor (CAR) T cell dysfunction is a major barrier to achieving lasting remission in hematologic cancers, especially in chronic lymphocytic leukemia (CLL). We have shown previously that Δ133p53α, an endogenous isoform of the human TP53 gene, decreases in expression with age in human T cells, and that reconstitution of Δ133p53α in poorly functional T cells can rescue proliferation [A. M. Mondal et al., J. Clin. Invest. 123, 5247-5257 (2013)]. Although Δ133p53α lacks a transactivation domain, it can form heterooligomers with full-length p53 and modulate the p53-mediated stress response [I. Horikawa et al., Cell Death Differ. 24, 1017-1028 (2017)]. Here, we show that constitutive expression of Δ133p53α potentiates the anti-tumor activity of CD19-directed CAR T cells and limits dysfunction under conditions of high tumor burden and metabolic stress. We demonstrate that Δ133p53α-expressing CAR T cells exhibit a robust metabolic phenotype, maintaining the ability to execute effector functions and continue proliferating under nutrient-limiting conditions, in part due to upregulation of critical biosynthetic processes and improved mitochondrial function. Importantly, we show that our strategy to constitutively express Δ133p53α improves the anti-tumor efficacy of CAR T cells generated from CLL patients that previously failed CAR T cell therapy. More broadly, our results point to the potential role of the p53-mediated stress response in limiting the prolonged antitumor functions required for complete tumor clearance in patients with high disease burden, suggesting that modulation of the p53 signaling network with Δ133p53α may represent a translationally viable strategy for improving CAR T cell therapy.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Antigens, CD19 , Cell- and Tissue-Based Therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
18.
Blood ; 143(2): 139-151, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37616575

ABSTRACT

ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Humans , Mice , Animals , Multiple Myeloma/metabolism , CD28 Antigens/metabolism , T-Lymphocytes , B-Cell Maturation Antigen/metabolism , Neoplasm Recurrence, Local/metabolism
19.
Proc Natl Acad Sci U S A ; 120(12): e2218632120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36920923

ABSTRACT

A fundamental limitation of T cell therapies in solid tumors is loss of inflammatory effector functions, such as cytokine production and proliferation. Here, we target a regulatory axis of T cell inflammatory responses, Regnase-1 and Roquin-1, to enhance antitumor responses in human T cells engineered with two clinical-stage immune receptors. Building on previous observations of Regnase-1 or Roquin-1 knockout in murine T cells or in human T cells for hematological malignancy models, we found that knockout of either Regnase-1 or Roquin-1 alone enhances antitumor function in solid tumor models, but that knockout of both Regnase-1 and Roquin-1 increases function further than knockout of either regulator alone. Double knockout of Regnase-1 and Roquin-1 increased resting T cell inflammatory activity and led to at least an order of magnitude greater T cell expansion and accumulation in xenograft mouse models, increased cytokine activity, and persistence. However double knockout of Regnase-1 and Roguin-1 also led to a lymphoproliferative syndrome and toxicity in some mice. These results suggest that regulators of immune inflammatory functions may be interesting targets to modulate to improve antitumor responses.


Subject(s)
Endoribonucleases , T-Lymphocytes , Humans , Mice , Animals , Cytokines , Ribonucleases/genetics
20.
Blood ; 141(6): 609-619, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36351239

ABSTRACT

Children living in poverty experience excessive relapse and death from newly diagnosed acute lymphoblastic leukemia (ALL). The influence of household poverty and neighborhood social determinants on outcomes from chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory (r/r) leukemia is poorly described. We identified patients with r/r CD19+ ALL/lymphoblastic lymphoma treated on CD19-directed CAR T-cell clinical trials or with commercial tisagenlecleucel from 2012 to 2020. Socioeconomic status (SES) was proxied at the household level, with poverty exposure defined as Medicaid-only insurance. Low-neighborhood opportunity was defined by the Childhood Opportunity Index. Among 206 patients aged 1 to 29, 35.9% were exposed to household poverty, and 24.9% had low-neighborhood opportunity. Patients unexposed to household poverty or low-opportunity neighborhoods were more likely to receive CAR T-cell therapy with a high disease burden (>25%), a disease characteristic associated with inferior outcomes, as compared with less advantaged patients (38% vs 30%; 37% vs 26%). Complete remission (CR) rate was 93%, with no significant differences by household poverty (P = .334) or neighborhood opportunity (P = .504). In multivariate analysis, patients from low-opportunity neighborhoods experienced an increased hazard of relapse as compared with others (P = .006; adjusted hazard ratio [HR], 2.3; 95% confidence interval [CI], 1.3-4.1). There was no difference in hazard of death (P = .545; adjusted HR, 1.2; 95% CI, 0.6-2.4). Among children who successfully receive CAR T-cell therapy, CR and overall survival are equitable regardless of proxied SES and neighborhood opportunity. Children from more advantaged households and neighborhoods receive CAR T-cell therapy with a higher disease burden. Investigation of multicenter outcomes and access disparities outside of clinical trial settings is warranted.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Child , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Recurrence , Antigens, CD19 , Poverty
SELECTION OF CITATIONS
SEARCH DETAIL