Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Opt Express ; 32(2): 1334-1341, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297688

ABSTRACT

2 µm photonics and optoelectronics is promising for potential applications such as optical communications, LiDAR, and chemical sensing. While the research on 2 µm detectors is on the rise, the development of InP-based 2 µm gain materials with 0D nanostructures is rather stalled. Here, we demonstrate low-threshold, continuous wave lasing at 2 µm wavelength from InAs quantum dash/InP lasers enabled by punctuated growth of the quantum structure. We demonstrate low threshold current densities from the 7.1 µm width ridge-waveguide lasers, with values of 657, 1183, and 1944 A/cm2 under short pulse wave (SPW), quasi-continuous wave (QCW), and continuous wave operation. The lasers also exhibited good thermal stability, with a characteristic temperature T0 of 43 K under SPW mode. The lasing spectra is centered at 1.97 µm, coinciding with the ground-state emission observed from photoluminescence studies. We believe that the InAs quantum dash/InP lasers emitting near 2 µm will be a key enabling technology for 2 µm communication and sensing.

2.
Nano Lett ; 23(8): 3344-3351, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37027572

ABSTRACT

Fabrication of high quantum efficiency nanoscale device is challenging due to increased carrier loss at surface. Low dimensional materials such 0D quantum dots and 2D materials have been widely studied to mitigate the loss. Here, we demonstrate a strong photoluminescence enhancement from graphene/III-V quantum dot mixed-dimensional heterostructures. The distance between graphene and quantum dots in the 2D/0D hybrid structure determines the degree of radiative carrier recombination enhancement from 80% to 800% compared to the quantum dot only structure. Time-resolved photoluminescence decay also shows increased carrier lifetimes when the distance decreases from 50 to 10 nm. We propose that the optical enhancement is due to energy band bending and hole carrier transfer, which repair the imbalance of electron and hole carrier densities in quantum dots. This 2D graphene/0D quantum dot heterostructure shows promise for high performance nanoscale optoelectronic devices.

3.
Opt Express ; 28(24): 36559-36567, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379747

ABSTRACT

We demonstrate flexible GaAs photodetector arrays that were hetero-epitaxially grown on a Si wafer for a new cost-effective and reliable wearable optoelectronics platform. A high crystalline quality GaAs layer was transferred onto a flexible foreign substrate and excellent retention of device performance was demonstrated by measuring the optical responsivities and dark currents. Optical simulation proves that the metal stacks used for wafer bonding serve as a back-reflector and enhance GaAs photodetector responsivity via a resonant-cavity effect. Device durability was also tested by bending 1000 times and no performance degradation was observed. This work paves a way for a cost-effective and flexible III-V optoelectronics technology with high durability.

4.
Opt Lett ; 45(11): 2954-2956, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32479431

ABSTRACT

Low-dark-current waveguide modified uni-traveling carrier photodiodes (PDs) are demonstrated by direct heteroepitaxy of InGaAs/InAlGaAs on silicon templates. The PDs have a dark current of 0.1 µA at -3V bias and an internal (external) responsivity of 0.78 A/W (0.27 A/W). The 3 dB bandwidth is 28 GHz, and open eye diagrams are detected at 40 Gbit/s.

5.
Opt Lett ; 45(17): 4887-4890, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32870883

ABSTRACT

This work experimentally investigates the impact of p-doping on the relative intensity noise (RIN) properties and subsequently on the modulation properties of semiconductor quantum dot (QD) lasers epitaxially grown on silicon. Owing to the low threading dislocation density and the p-modulation doped GaAs barrier layer in the active region, the RIN level is found very stable with temperature with a minimum value of -150dB/Hz. The dynamical features extracted from the RIN spectra show that p-doping between zero and 20 holes/dot strongly modifies the modulation properties and gain nonlinearities through increased internal losses in the active region and thereby hinders the maximum achievable bandwidth. Overall, this Letter is important for designing future high-speed and low-noise QD devices integrated in future photonic integrated circuits.

6.
Nano Lett ; 19(3): 1488-1493, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30721622

ABSTRACT

Recently rediscovered layered black phosphorus (BP) provides rich opportunities for investigations of device physics and applications. The band gap of BP is widely tunable by its layer number and a vertical electric field, covering a wide electromagnetic spectral range from visible to mid-infrared. Despite much progress in BP optoelectronics, the fundamental photoluminescence (PL) properties of thin-film BP in mid-infrared have rarely been investigated. Here, we report bright PL emission from thin-film BP (with thickness of 4.5 to 46 nm) from 80 to 300 K. The PL measurements indicate a band gap of 0.308 ± 0.003 eV in 46 nm thick BP at 80 K, and it increases monotonically to 0.334 ± 0.003 eV at 300 K. Such an anomalous blueshift agrees with the previous theoretical and photoconductivity spectroscopy results. However, the observed blueshift of 26 meV from 80 to 300 K is about 60% of the previously reported value. Most importantly, we show that the PL emission intensity from thin-film BP is only a few times weaker than that of an indium arsenide (InAs) multiple quantum well (MQW) structure grown by molecular beam epitaxy. Finally, we report the thickness-dependent PL spectra in thin-film BP in mid-infrared regime. Our work reveals the mid-infrared light emission properties of thin-film BP, suggesting its promising future in tunable mid-infrared light emitting and lasing applications.

7.
Opt Lett ; 44(14): 3538-3541, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31305567

ABSTRACT

We demonstrate a III-V avalanche photodiode (APD) grown by heteroepitaxy on silicon. This InGaAs/InAlAs APD exhibits low dark current, gain >20, external quantum efficiency >40%, and similar low excess noise, k∼0.2, as InAlAs APDs on InP.

8.
Opt Express ; 26(6): 7022-7033, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29609387

ABSTRACT

We report the first demonstration of direct modulation of InAs/GaAs quantum dot (QD) lasers grown on on-axis (001) Si substrate. A low threading dislocation density GaAs buffer layer enables us to grow a high quality 5-layered QD active region on on-axis Si substrate. The active layer has p-modulation doped GaAs barrier layers with a hole concentration of 5 × 1017 cm-3to suppress gain saturation. Small-signal measurement on a 3 × 580 µm2 Fabry-Perot laser showed a 3dB bandwidth of 6.5 GHz at a bias current of 116 mA. A 12.5 Gbit/s non-return-to-zero signal modulation was achieved by directly probing the chip. Open eyes with an extinction ration of 3.3dB was observed at room temperature. The bit-error-rate (BER) curve showed no error-floor up to BER of 1 × 10-13. 12 km single-mode fiber transmission experiments using the QD laser on Si showed a low power penalty of 1 dB at 5Gbit/s. These results demonstrate the potential for QD lasers epitaxially grown on Si to be used as a low-cost light source for optical communication systems.

9.
Opt Express ; 26(10): 13605-13613, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801383

ABSTRACT

Top-illuminated PIN and modified uni-traveling carrier (MUTC) photodiodes based on InGaAs/InAlAs/InP were epitaxially grown on Si templates. Photodiodes with 30-µm diameter have dark currents as low as 10 nA at 3 V corresponding to a dark current density of only 0.8 mA/cm2. The responsivity, 3-dB bandwidth, output power and third-order output intercept point (OIP3) were 0.79 A/W, 9 GHz, 2.6 dBm and 15 dBm, respectively.

10.
Opt Express ; 25(22): 26853-26860, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092170

ABSTRACT

We report statistical comparisons of lasing characteristics in InAs quantum dot (QD) micro-rings directly grown on on-axis (001) GaP/Si and V-groove (001) Si substrates. CW thresholds as low as 3 mA and high temperature operation exceeding 80 °C were simultaneously achieved on the GaP/Si template template with an outer-ring radius of 50 µm and a ring width of 4 µm, while a sub-milliamp threshold of 0.6 mA was demonstrated on the V-groove Si template with a smaller cavity size of 5-µm outer-ring radius and 3-µm ring width. Evaluations were also made with devices fabricated simultaneously on native GaAs substrates over a significant sampling analysis. The overall assessment spotlights compelling insights in exploring the optimum epitaxial scheme for low-threshold lasing on industry standard Si substrates.

11.
Opt Express ; 25(22): 27715-27723, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092242

ABSTRACT

We report InAs/InGaAs quantum dot (QD) waveguide photodetectors (PD) monolithically grown on silicon substrates. A high-crystalline quality GaAs-on-Si template was achieved by aspect ratio trapping together with the combined effects of cyclic thermal annealing and strain-balancing layer stacks. An ultra-low dark current of 0.8 nA and an internal responsivity of 0.9 A/W were measured in the O band. We also report, to the best of our knowledge, the first characterization of high-speed performance and the first demonstration of the on-chip photodetection for this QD-on-silicon system. The monolithically integrated waveguide PD shares the same platform as the previously demonstrated micro-ring lasers and can thus be integrated with laser sources for power monitors or amplifiers for pre-amplified receivers.

12.
Opt Lett ; 42(2): 338-341, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-28081107

ABSTRACT

We demonstrate the first electrically pumped continuous-wave (CW) III-V semiconductor lasers epitaxially grown on on-axis (001) silicon substrates without offcut or germanium layers, using InAs/GaAs quantum dots as the active region and an intermediate GaP buffer between the silicon and device layers. Broad-area lasers with uncoated facets achieve room-temperature lasing with threshold current densities around 860 A/cm2 and 110 mW of single-facet output power for the same device. Ridge lasers designed for low threshold operations show maximum lasing temperatures up to 90°C and thresholds down to 30 mA.

13.
Nano Lett ; 16(11): 6931-6938, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27775368

ABSTRACT

We report the first direct dry transfer of a single-crystalline thin film grown by molecular beam epitaxy. A double cantilever beam fracture technique was used to transfer epitaxial bismuth thin films grown on silicon (111) to silicon strips coated with epoxy. The transferred bismuth films retained electrical, optical, and structural properties comparable to the as-grown epitaxial films. Additionally, we isolated the bismuth thin films on freestanding flexible cured-epoxy post-transfer. The adhesion energy at the bismuth/silicon interface was measured to be ∼1 J/m2, comparable to that of exfoliated and wet transferred graphene. This low adhesion energy and ease of transfer is unexpected for an epitaxially grown film and may enable the study of bismuth's unique electronic and spintronic properties on arbitrary substrates. Moreover, this method suggests a route to integrate other group-V epitaxial films (i.e., phosphorus) with arbitrary substrates, as well as potentially to isolate bismuthene, the atomic thin-film limit of bismuth.

14.
ACS Appl Mater Interfaces ; 16(23): 30209-30217, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38828941

ABSTRACT

Monolithic integration of III-V quantum dot (QD) lasers onto a Si substrate is a scalable and reliable approach for obtaining highly efficient light sources for Si photonics. Recently, a combination of optimized GaAs buffers and QD gain materials resulted in monolithically integrated butt-coupled lasers on Si. However, the use of thick GaAs buffers up to 3 µm not only hinders accurate vertical alignment to the Si optical waveguide but also imposes considerable growth costs and time constraints. Here, for the first time, we demonstrate InAs QD lasers epitaxially grown on a 700 nm thick GaAs/Si template, which is approximately four times thinner than the conventional III-V buffers on Si. The optimized 700 nm GaAs buffer yields a remarkably smooth surface and low threading dislocation density of 4 × 108 cm-2, which is sufficient for QD laser growth. The InAs QD lasers fabricated on these ultrathin templates still lase at room temperature with a threshold current density of 661 A/cm2 and a characteristic temperature of 50 K. We believe that these results are important for the monolithically integrated III-V QD lasers for Si photonics applications.

15.
Nanoscale ; 16(6): 2966-2973, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38251961

ABSTRACT

Reliable quantum dot lasers on silicon are a key remaining challenge to successful integrated silicon photonics. In this work, quantum dot (QD) lasers on silicon with and without misfit dislocation trapping layers are aged for 12 000 hours and are compared to QD lasers on native GaAs aged for 8400 hours. The non-trapping-layer (TL) laser on silicon degrades heavily during this time, but much more modest gradual degradation is observed for the other two devices. Electroluminescence imaging reveals relatively uniform gradual dimming for the aged TL laser on silicon. At the same time, we find nanoscale dislocation loop defects throughout the quantum dot-based active region of all three aged lasers via electron microscopy. The Burgers vector of these loops is consistent with . We suggest that the primary source of degradation, however, is the generation and migration of point defects that substantially enhance non-radiative recombination in the active region, the visible symptom of which is the formation of dislocation loops. To prevent this, we propose that laser fabrication should be switched from deeply etched to shallow etch ridges where the active region remains intact near the mesa. Additionally, post-growth annealing and altered growth conditions in the active region should be explored to minimize the grown-in point defect density.

16.
ACS Appl Mater Interfaces ; 15(48): 55965-55974, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37978916

ABSTRACT

Monolithic integration of GaSb-based optoelectronic devices on Si is a promising approach for achieving a low-cost, compact, and scalable infrared photonics platform. While tremendous efforts have been put into reducing dislocation densities by using various defect filter layers, exploring other types of extended crystal defects that can exist on GaSb/Si buffers has largely been neglected. Here, we show that GaSb growth on Si generates a high density of micro-twin (MT) defects as well as threading dislocations (TDs) to accommodate the extremely large misfit between GaSb and Si. We found that a 250 nm AlSb single insertion layer is more effective than AlSb/GaSb strained superlattices in reducing both types of defects, resulting in a 4× and 13× reduction in TD density and MT density, respectively, compared with a reference sample with no defect filter layer. InGaSb quantum well light-emitting diodes were grown on the GaSb/Si templates, and the effect of TD density and MT density on their performance was studied. This work shows the importance of using appropriate defect filter layers for high performance GaSb-based optoelectronic devices on standard on-axis (001) Si via direct epitaxial growth.

17.
ACS Appl Mater Interfaces ; 14(39): 45051-45058, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36162121

ABSTRACT

We report on the photoluminescence enhancement of 1.3 µm InAs quantum dots (QDs) epitaxially grown on an ultrathin 250 nm GaAs buffer on a Si substrate. Decreasing the GaAs buffer thickness from 1000 to 250 nm was found to not only increase the coalesced QD density from 6.5 × 108 to 1.9 × 109 cm-2 but also decrease the QD photoluminescence emission intensity dramatically. Inserting an Al0.4Ga0.6As potential barrier layer maintained strong photoluminescence from the QDs by effectively suppressing carrier leakage to the GaAs/Si interfacial region even when the GaAs buffer was thinned to 250 nm. We then fabricated a light-emitting diode using the ultrathin 250 nm GaAs buffer on Si and confirmed strong electroluminescence peaking at 1.28 µm without interfacial defect emission at room temperature. We believe that this work is promising for monolithically integrated evanescent Si lasers using InAs/GaAs QDs.

18.
J Nanosci Nanotechnol ; 11(5): 4540-5, 2011 May.
Article in English | MEDLINE | ID: mdl-21780493

ABSTRACT

Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.


Subject(s)
Magnetics , Nanotubes, Carbon , Proteins/metabolism , Ligands , Microscopy, Electron, Scanning , Protein Binding
19.
J Nanosci Nanotechnol ; 11(5): 4210-6, 2011 May.
Article in English | MEDLINE | ID: mdl-21780429

ABSTRACT

We investigate the effect of functional groups of pyrene molecules on the electrical sensing performance of single-walled carbon nanotubes (SWNTs) based DNA biosensor, in which pyrenes with three different functional groups of carboxylic acid (Py-COOH), aldehyde (Py-CHO) and amine (Py-NH2) are used as linker molecules to immobilize DNA on the SWNT films. UV/Visible absorption spectra results show that all of the pyrene molecules are successfully immobilized on the SWNT surface via pi-pi stacking interaction. Based on fluorescence analysis, we show that the amide bonding of amine terminated DNA via pyrene containing carboxylic groups is the most efficient to immobilize DNA on the nanotube film. The electrical detection results show that the conductance of Py-COOH modified SWNT film is increased upon DNA immobilization, followed by further increase after hybridization of target DNAs. It indicates that the pyrene molecules with carboxylic acid groups play an important role to achieve highly efficient label-free detection by nondestructive and specific immobilization of DNAs.


Subject(s)
DNA/analysis , DNA/genetics , Nanotubes, Carbon , Nucleic Acid Hybridization , Pyrenes/chemistry , Spectrophotometry, Ultraviolet
20.
ACS Appl Mater Interfaces ; 13(46): 55648-55655, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34779602

ABSTRACT

Current infrared thermal image sensors are mainly based on planar firm substrates, but the rigid form factor appears to restrain the versatility of their applications. For wearable health monitoring and implanted biomedical sensing, transfer of active device layers onto a flexible substrate is required while controlling the high-quality crystalline interface. Here, we demonstrate high-detectivity flexible InAs thin-film mid-infrared photodetector arrays through high-yield wafer bonding and a heteroepitaxial lift-off process. An abruptly graded InxAl1-xAs (0.5 < x < 1) buffer was found to drastically improve the lift-off interface morphology and reduce the threading dislocation density twice, compared to the conventional linear grading method. Also, our flexible InAs photodetectors showed excellent optical performance with high mechanical robustness, a peak room-temperature specific detectivity of 1.21 × 109 cm-Hz1/2/W at 3.4 µm, and excellent device reliability. This flexible InAs photodetector enabled by the heteroepitaxial lift-off method shows promise for next-generation thermal image sensors.

SELECTION OF CITATIONS
SEARCH DETAIL