Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 603(7900): 343-347, 2022 03.
Article in English | MEDLINE | ID: mdl-35236982

ABSTRACT

CRISPR-Cas9 as a programmable genome editing tool is hindered by off-target DNA cleavage1-4, and the underlying mechanisms by which Cas9 recognizes mismatches are poorly understood5-7. Although Cas9 variants with greater discrimination against mismatches have been designed8-10, these suffer from substantially reduced rates of on-target DNA cleavage5,11. Here we used kinetics-guided cryo-electron microscopy to determine the structure of Cas9 at different stages of mismatch cleavage. We observed a distinct, linear conformation of the guide RNA-DNA duplex formed in the presence of mismatches, which prevents Cas9 activation. Although the canonical kinked guide RNA-DNA duplex conformation facilitates DNA cleavage, we observe that substrates that contain mismatches distal to the protospacer adjacent motif are stabilized by reorganization of a loop in the RuvC domain. Mutagenesis of mismatch-stabilizing residues reduces off-target DNA cleavage but maintains rapid on-target DNA cleavage. By targeting regions that are exclusively involved in mismatch tolerance, we provide a proof of concept for the design of next-generation high-fidelity Cas9 variants.


Subject(s)
CRISPR-Cas Systems , DNA Mismatch Repair , Gene Editing , RNA, Guide, Kinetoplastida , CRISPR-Associated Protein 9/genetics , Cryoelectron Microscopy , DNA/chemistry , DNA/genetics , Nucleic Acid Conformation , RNA, Guide, Kinetoplastida/genetics
3.
Nat Commun ; 11(1): 3576, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32681021

ABSTRACT

CRISPR/Cas9 is a programmable genome editing tool widely used for biological applications and engineered Cas9s have increased discrimination against off-target cleavage compared with wild-type Streptococcus pyogenes (SpCas9) in vivo. To understand the basis for improved discrimination against off-target DNA containing important mismatches at the distal end of the guide RNA, we performed kinetic analyses on the high-fidelity (Cas9-HF1) and hyper-accurate (HypaCas9) engineered Cas9 variants. We show that DNA cleavage is impaired by more than 100- fold for the high-fidelity variants. The high-fidelity variants improve discrimination by slowing the observed rate of cleavage without increasing the rate of DNA rewinding and release. The kinetic partitioning favors release rather than cleavage of a bound off-target substrate only because the cleavage rate is so low. Further improvement in discrimination may require engineering increased rates of dissociation of off-target DNA.


Subject(s)
CRISPR-Associated Protein 9/metabolism , DNA, Bacterial/metabolism , Streptococcus pyogenes/enzymology , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Cleavage , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Kinetics , Streptococcus pyogenes/chemistry , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL