Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Publication year range
1.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34592166

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
2.
EMBO J ; 41(17): e111608, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35833542

ABSTRACT

The SARS-CoV-2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2'-O-ribose cap needed for viral immune escape. We find that the host cap 2'-O-ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS-CoV-2 replication. Using in silico target-based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti-SARS-CoV-2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co-substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID-19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection-induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Inflammation/drug therapy , Methyltransferases/metabolism , Mice , RNA Caps/metabolism , RNA, Viral/genetics , Ribose , Viral Nonstructural Proteins/genetics
3.
Nature ; 574(7777): 259-263, 2019 10.
Article in English | MEDLINE | ID: mdl-31554973

ABSTRACT

Chikungunya virus (CHIKV) is a re-emerging alphavirus that is transmitted to humans by mosquito bites and causes musculoskeletal and joint pain1,2. Despite intensive investigations, the human cellular factors that are critical for CHIKV infection remain unknown, hampering the understanding of viral pathogenesis and the development of anti-CHIKV therapies. Here we identified the four-and-a-half LIM domain protein 1 (FHL1)3 as a host factor that is required for CHIKV permissiveness and pathogenesis in humans and mice. Ablation of FHL1 expression results in the inhibition of infection by several CHIKV strains and o'nyong-nyong virus, but not by other alphaviruses and flaviviruses. Conversely, expression of FHL1 promotes CHIKV infection in cells that do not normally express it. FHL1 interacts directly with the hypervariable domain of the nsP3 protein of CHIKV and is essential for the replication of viral RNA. FHL1 is highly expressed in CHIKV-target cells and is particularly abundant in muscles3,4. Dermal fibroblasts and muscle cells derived from patients with Emery-Dreifuss muscular dystrophy that lack functional FHL15 are resistant to CHIKV infection. Furthermore,  CHIKV infection  is undetectable in Fhl1-knockout mice. Overall, this study shows that FHL1 is a key factor expressed by the host that enables CHIKV infection and identifies the interaction between nsP3 and FHL1 as a promising target for the development of anti-CHIKV therapies.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Host-Derived Cellular Factors/metabolism , Host-Pathogen Interactions , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Muscle Proteins/metabolism , Animals , Cells, Cultured , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Chikungunya virus/genetics , Chikungunya virus/growth & development , Female , Fibroblasts/virology , HEK293 Cells , Host-Derived Cellular Factors/genetics , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/deficiency , LIM Domain Proteins/genetics , Male , Mice , Muscle Proteins/deficiency , Muscle Proteins/genetics , Myoblasts/virology , O'nyong-nyong Virus/growth & development , O'nyong-nyong Virus/pathogenicity , Protein Binding , RNA, Viral/biosynthesis , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
4.
BMC Biol ; 22(1): 5, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38185627

ABSTRACT

BACKGROUND: SARS-CoV-2 infection depends on the host cell factors angiotensin-converting enzyme 2, ACE2, and the transmembrane serinprotease 2, TMPRSS2. Potential inhibitors of these proteins would be ideal targets against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Our data opens the possibility that changes within TMPRSS2 can modulate the outcome during a SARS-CoV-2 infection. RESULTS: We reveal that TMPRSS2 acts not only during viral entry but has also an important role during viral replication. In addition to previous functions for TMPRSS2 during viral entry, we determined by specific downregulation of distinct isoforms that only isoform 1 controls and supports viral replication. G-quadruplex (G4) stabilization by chemical compounds impacts TMPRSS2 gene expression. Here we extend and in-depth characterize these observations and identify that a specific G4 in the first exon of the TMPRSS2 isoform 1 is particular targeted by the G4 ligand and affects viral replication. Analysis of potential single nucleotide polymorphisms (SNPs) reveals that a reported SNP at this G4 in isoform 1 destroys the G4 motif and makes TMPRSS2 ineffective towards G4 treatment. CONCLUSION: These findings uncover a novel mechanism in which G4 stabilization impacts SARS-CoV-2 replication by changing TMPRSS2 isoform 1 gene expression.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , Down-Regulation , Protein Isoforms , Exons , Serine Endopeptidases/genetics
5.
Immunity ; 43(1): 41-51, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26187414

ABSTRACT

The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation. Moreover, we identified a single conserved amino acid (H830) in the RIG-I RNA binding pocket as the mediator of steric exclusion of N1-2'O-methylated RNA. H830A alteration (RIG-I(H830A)) restored binding of N1-2'O-methylated pppRNA. Consequently, endogenous mRNA activated the RIG-I(H830A) mutant but not wild-type RIG-I. Similarly, knockdown of the endogenous N1-2'O-methyltransferase led to considerable RIG-I stimulation in the absence of exogenous stimuli. Studies involving yellow-fever-virus-encoded 2'O-methyltransferase and RIG-I(H830A) revealed that viruses exploit this mechanism to escape RIG-I. Our data reveal a new role for cap N1-2'O-methylation in RIG-I tolerance of self-RNA.


Subject(s)
DEAD-box RNA Helicases/genetics , Immune Tolerance/genetics , RNA Processing, Post-Transcriptional/genetics , RNA/genetics , Yellow fever virus/enzymology , Amino Acid Sequence , Animals , Cells, Cultured , DEAD Box Protein 58 , Enzyme Activation/genetics , Enzyme Activation/immunology , Histidine/genetics , Humans , Methylation , Methyltransferases/genetics , Mice , Protein Structure, Tertiary , RNA/chemistry , RNA/immunology , RNA, Viral/immunology , Receptors, Immunologic , Yellow fever virus/genetics
6.
J Hepatol ; 79(1): 150-166, 2023 07.
Article in English | MEDLINE | ID: mdl-36870611

ABSTRACT

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Subject(s)
COVID-19 , Interferon Type I , Mice , Animals , Interleukin-10 , SARS-CoV-2 , Mice, Transgenic , Liver Cirrhosis , Mice, Inbred C57BL
7.
J Virol ; 96(7): e0196221, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35266803

ABSTRACT

Dengue virus (DENV) is a mosquito-borne flavivirus responsible for dengue disease, a major human health concern for which no effective treatment is available. DENV relies heavily on the host cellular machinery for productive infection. Here, we show that the scaffold protein RACK1, which is part of the DENV replication complex, mediates infection by binding to the 40S ribosomal subunit. Mass spectrometry analysis of RACK1 partners coupled to an RNA interference screen-identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV genome. Genetic ablation of Vigilin or SERBP1 rendered cells poorly susceptible to DENV, as well as related flaviviruses, by hampering the translation and replication steps. Finally, we established that a Vigilin or SERBP1 mutant lacking RACK1 binding but still interacting with the viral RNA is unable to mediate DENV infection. We propose that RACK1 recruits Vigilin and SERBP1, linking the DENV genome to the translation machinery for efficient infection. IMPORTANCE We recently identified the scaffolding RACK1 protein as an important host-dependency factor for dengue virus (DENV), a positive-stranded RNA virus responsible for the most prevalent mosquito-borne viral disease worldwide. Here, we have performed the first RACK1 interactome in human cells and identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV RNA to regulate viral replication. Importantly, Vigilin and SERBP1 interact with RACK1 and the DENV viral RNA (vRNA) to mediate viral replication. Overall, our results suggest that RACK1 acts as a binding platform at the surface of the 40S ribosomal subunit to recruit Vigilin and SERBP1, which may therefore function as linkers between the viral RNA and the translation machinery to facilitate infection.


Subject(s)
Dengue Virus , Dengue , RNA-Binding Proteins , Animals , Dengue/physiopathology , Dengue Virus/physiology , Host Microbial Interactions/physiology , Humans , Neoplasm Proteins/metabolism , RNA, Viral/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors for Activated C Kinase/metabolism , Virus Replication
8.
J Med Virol ; 94(1): 388-392, 2022 01.
Article in English | MEDLINE | ID: mdl-34415572

ABSTRACT

In the current COVID-19 pandemic, a better understanding of the relationship between merely binding and functionally neutralizing antibodies is necessary to characterize protective antiviral immunity following infection or vaccination. This study analyzes the level of correlation between the novel quantitative EUROIMMUN Anti-SARS-CoV-2 QuantiVac ELISA (IgG) and a microneutralization assay. A panel of 123 plasma samples from a COVID-19 outbreak study population, preselected by semiquantitative anti-SARS-CoV-2 IgG testing, was used to assess the relationship between the novel quantitative ELISA (IgG) and a microneutralization assay. Binding IgG targeting the S1 antigen was detected in 106 (86.2%) samples using the QuantiVac ELISA, while 89 (72.4%) samples showed neutralizing antibody activity. Spearman's correlation analysis demonstrated a strong positive relationship between anti-S1 IgG levels and neutralizing antibody titers (rs = 0.819, p < 0.0001). High and low anti-S1 IgG levels were associated with a positive predictive value of 72.0% for high-titer neutralizing antibodies and a negative predictive value of 90.8% for low-titer neutralizing antibodies, respectively. These results substantiate the implementation of the QuantiVac ELISA to assess protective immunity following infection or vaccination.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19/pathology , COVID-19 Serological Testing/methods , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Neutralization Tests/methods , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Young Adult
9.
Angew Chem Int Ed Engl ; 61(38): e202204556, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35802496

ABSTRACT

The emergence of more transmissible or aggressive variants of SARS-CoV-2 requires the development of antiviral medication that is quickly adjustable to evolving viral escape mutations. Here we report the synthesis of chemically stabilized small interfering RNA (siRNA) against SARS-CoV-2. The siRNA can be further modified with receptor ligands such as peptides using CuI -catalysed click-chemistry. We demonstrate that optimized siRNAs can reduce viral loads and virus-induced cytotoxicity by up to five orders of magnitude in cell lines challenged with SARS-CoV-2. Furthermore, we show that an ACE2-binding peptide-conjugated siRNA is able to reduce virus replication and virus-induced apoptosis in 3D mucociliary lung microtissues. The adjustment of the siRNA sequence allows a rapid adaptation of their antiviral activity against different variants of concern. The ability to conjugate the siRNA via click-chemistry to receptor ligands facilitates the construction of targeted siRNAs for a flexible antiviral defence strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Humans , Ligands , RNA, Small Interfering/pharmacology , SARS-CoV-2/genetics , Virus Replication
10.
Emerg Infect Dis ; 25(8): 1485-1493, 2019 08.
Article in English | MEDLINE | ID: mdl-31075077

ABSTRACT

The Zika virus outbreak in Latin America resulted in congenital malformations, called congenital Zika syndrome (CZS). For unknown reasons, CZS incidence was highest in northeastern Brazil; one potential explanation is that dengue virus (DENV)-mediated immune enhancement may promote CZS development. In contrast, our analyses of historical DENV genomic data refuted the hypothesis that unique genome signatures for northeastern Brazil explain the uneven dispersion of CZS cases. To confirm our findings, we performed serotype-specific DENV neutralization tests in a case-control framework in northeastern Brazil among 29 Zika virus-seropositive mothers of neonates with CZS and 108 Zika virus-seropositive control mothers. Neutralization titers did not differ significantly between groups. In contrast, DENV seroprevalence and median number of neutralized serotypes were significantly lower among the mothers of neonates with CZS. Supported by model analyses, our results suggest that multitypic DENV infection may protect from, rather than enhance, development of CZS.


Subject(s)
Cross Protection/immunology , Dengue Virus/immunology , Dengue/immunology , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/epidemiology , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Brazil/epidemiology , Dengue/epidemiology , Dengue/history , Dengue Virus/classification , Dengue Virus/genetics , Female , History, 20th Century , History, 21st Century , Humans , Infant, Newborn , Phylogeny , Pregnancy , Prevalence , Public Health Surveillance , Serogroup , Time Factors , Zika Virus Infection/history , Zika Virus Infection/transmission
11.
J Virol ; 92(6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29263261

ABSTRACT

In previous studies, we showed that the cellular RNA-binding protein AUF1 supports the replication process of the flavivirus West Nile virus. Here we demonstrate that the protein also enables effective proliferation of dengue virus and Zika virus, indicating that AUF1 is a general flavivirus host factor. Further studies demonstrated that the AUF1 isoform p45 significantly stimulates the initiation of viral RNA replication and that the protein's RNA chaperone activity enhances the interactions of the viral 5'UAR and 3'UAR genome cyclization sequences. Most interestingly, we observed that AUF1 p45 destabilizes not only the 3'-terminal stem-loop (3'SL) but also 5'-terminal stem-loop B (SLB) of the viral genome. RNA structure analyses revealed that AUF1 p45 increases the accessibility of defined nucleotides within the 3'SL and SLB and, in this way, exposes both UAR cyclization elements. Conversely, AUF1 p45 does not modulate the fold of stem-loop A (SLA) at the immediate genomic 5' end, which is proposed to function as a promoter of the viral RNA-dependent RNA polymerase (RdRp). These findings suggest that AUF1 p45, by destabilizing specific stem-loop structures within the 5' and 3' ends of the flaviviral genome, assists genome cyclization and concurrently enables the RdRp to initiate RNA synthesis. Our study thus highlights the role of a cellular RNA-binding protein inducing a flaviviral RNA switch that is crucial for viral replication.IMPORTANCE The genus Flavivirus within the Flaviviridae family includes important human pathogens, such as dengue, West Nile, and Zika viruses. The initiation of replication of the flaviviral RNA genome requires a transformation from a linear to a cyclized form. This involves considerable structural reorganization of several RNA motifs at the genomic 5' and 3' ends. Specifically, it needs a melting of stem structures to expose complementary 5' and 3' cyclization elements to enable their annealing during cyclization. Here we show that a cellular RNA chaperone, AUF1 p45, which supports the replication of all three aforementioned flaviviruses, specifically rearranges stem structures at both ends of the viral genome and in this way permits 5'-3' interactions of cyclization elements. Thus, AUF1 p45 triggers the RNA switch in the flaviviral genome that is crucial for viral replication. These findings represent an important example of how cellular (host) factors promote the propagation of RNA viruses.


Subject(s)
Flavivirus/physiology , Genome, Viral , Heterogeneous-Nuclear Ribonucleoprotein D/metabolism , Nucleic Acid Conformation , RNA, Viral/metabolism , Virus Replication/physiology , Heterogeneous Nuclear Ribonucleoprotein D0 , Heterogeneous-Nuclear Ribonucleoprotein D/chemistry , Heterogeneous-Nuclear Ribonucleoprotein D/genetics , Humans , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Mol Ther ; 25(9): 2093-2103, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28760668

ABSTRACT

Influenza A virus infection causes substantial morbidity and mortality in seasonal epidemic outbreaks, and more efficient treatments are urgently needed. Innate immune sensing of viral nucleic acids stimulates antiviral immunity, including cell-autonomous antiviral defense mechanisms that restrict viral replication. RNA oligonucleotide ligands that potently activate the cytoplasmic helicase retinoic-acid-inducible gene I (RIG-I) are promising candidates for the development of new antiviral therapies. Here, we demonstrate in an Mx1-expressing mouse model of influenza A virus infection that a single intravenous injection of low-dose RIG-I ligand 5'-triphosphate RNA (3pRNA) completely protected mice from a lethal challenge with influenza A virus for at least 7 days. Furthermore, systemic administration of 3pRNA rescued mice with pre-established fulminant influenza infection and prevented the fatal effects of a streptococcal superinfection. Type I interferon, but not interferon-λ, was required for the therapeutic effect. Our results suggest that the use of RIG-I activating oligonucleotide ligands has the clinical potential to confine influenza epidemics when a strain-specific vaccine is not yet available and to reduce lethality of influenza in severely infected patients.


Subject(s)
Bacterial Infections , Influenza A virus , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Superinfection , Animals , Chemokine CXCL10/metabolism , Influenza A virus/immunology , Interferon Type I/metabolism , Ligands , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Membrane Proteins/agonists , Mice , Mice, Transgenic , Nerve Tissue Proteins/agonists , Oligonucleotides/administration & dosage , Oligonucleotides/genetics , Orthomyxoviridae Infections/mortality , Protective Agents/administration & dosage , RNA/administration & dosage , RNA/genetics , Receptors, Cell Surface , Survival Analysis , Toll-Like Receptors/metabolism
14.
Adv Exp Med Biol ; 1062: 165-173, 2018.
Article in English | MEDLINE | ID: mdl-29845532

ABSTRACT

Dengue virus (DENV) and Zika virus (ZIKV) are enveloped, positive-strand RNA viruses belonging to the genus Flavivirus in the family Flaviviridae. The genome of ~11 kb length encodes one long open reading frame flanked by a 5' and a 3' untranslated region (UTR). The 5' end is capped and the 3' end lacks a poly(A) tail. The encoded single polyprotein is cleaved co-and posttranslationally by cellular and viral proteases. The first one-third of the genome encodes the structural proteins (C-prM-E), whereas the nonstructural (NS) proteins NS1-NS2A-NS3-NS4A-2K-NS4B-NS5 are encoded by the remaining two-thirds of the genome.Research on flaviviruses was driven forward by the ability to produce recombinant viruses using reverse genetics technology. It is known that the purified RNA of flaviviruses is per se infectious, which allows initiation of a complete viral life cycle by transfecting the genomic RNA into susceptible cells. In 1989, the first infectious flavivirus RNA was transcribed from full-length cDNA templates of yellow fever virus (YFV) facilitating molecular genetic analyses of this virus. In addition to the production of infectious recombinant viruses, reverse genetics can also be used to establish non-infectious replicons. Replicons contain an in-frame deletion in the structural protein genes but still encode all nonstructural proteins and contain the UTRs necessary to mediate efficient replication, a factor that enables their analyses under Biosafety Level (BSL) 1 conditions. This is particularly important since many flaviviruses are BSL3 agents.The review will cover strategies for generating flavivirus replicons, including the establishment of bacteriophage (T7 or SP6) promoter-driven constructs as well as cytomegalovirus (CMV) promoter-driven constructs. Furthermore, different reporter replicons or replicons expressing selectable marker proteins will be outlined using examples of their application to answer basic questions of the flavivirus replication cycle, to select and test antiviral compounds or to produce virus replicon particles. The establishment and application of flavivirus replicons will further be exemplified by my own data using an established YFV reporter replicon to study the role of YFV NS2A in the viral life cycle. In addition, we established a reporter replicon of a novel insect-specific flavivirus, namely Niénokoué virus (NIEV), to define the barrier(s) involved in host range restriction.


Subject(s)
Dengue Virus/genetics , Dengue/virology , Replicon , Zika Virus Infection/virology , Zika Virus/genetics , Animals , Dengue Virus/physiology , Genome, Viral , Humans , Virus Replication , Zika Virus/physiology
15.
J Infect Dis ; 216(12): 1501-1504, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29272526

ABSTRACT

Reliable diagnosis of congenital Zika virus (ZIKV) infection is challenging. Here, we assessed ZIKV-specific neutralizing antibodies in 28 mothers of children with microcephaly (cases) and 122 controls from northeastern Brazil using plaque reduction neutralization tests. ZIKV-specific antibody titers were significantly higher in cases than in controls (t test, P < .0001). We identified a putative case of congenital Zika syndrome retrospectively by unusually high ZIKV-specific antibody titers. High ZIKV-specific antibody titers in cases were unrelated to prior dengue virus infection. Our data suggest a strong immunological stimulus from prolonged placental or transplacental ZIKV shedding and potential utility of maternal antibody titers to corroborate congenital ZIKV infection.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Pregnancy Complications, Infectious , Zika Virus Infection/congenital , Zika Virus Infection/diagnosis , Zika Virus/immunology , Adolescent , Adult , Brazil , Female , Humans , Infant , Infant, Newborn , Microcephaly/etiology , Neutralization Tests , Pregnancy , Retrospective Studies , Viral Plaque Assay , Young Adult
16.
Emerg Infect Dis ; 23(11)2017 11.
Article in English | MEDLINE | ID: mdl-28949285

ABSTRACT

The current yellow fever outbreak in Brazil prompted widespread yellow fever virus (YFV) vaccination campaigns, imposing a responsibility to distinguish between vaccine- and wild-type YFV-associated disease. We developed novel multiplex real-time reverse transcription PCRs that differentiate between vaccine and American wild-type YFV. We validated these highly specific and sensitive assays in an outbreak setting.


Subject(s)
Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Yellow Fever Vaccine/isolation & purification , Yellow Fever/virology , Yellow fever virus/isolation & purification , Brazil/epidemiology , Disease Outbreaks , Humans , Species Specificity , Yellow Fever/epidemiology
17.
Article in English | MEDLINE | ID: mdl-27993855

ABSTRACT

As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 µM) and Semliki Forest virus (SFV; EC50 = 0.11 µM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate.


Subject(s)
Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Endosomes/drug effects , Lysosomes/drug effects , Membrane Fusion/drug effects , Pyrroles/pharmacology , Semliki forest virus/drug effects , Animals , Cell Line , Cell Membrane/drug effects , Cell Membrane/virology , Chikungunya virus/genetics , Chikungunya virus/growth & development , Cricetinae , Drug Resistance, Viral/genetics , Endosomes/metabolism , Epithelial Cells/drug effects , Epithelial Cells/virology , Gene Expression , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Hydrogen-Ion Concentration/drug effects , Indoles , Lysosomes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mutation , Neutral Red/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Semliki forest virus/genetics , Semliki forest virus/growth & development , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects , West Nile virus/drug effects , West Nile virus/genetics , West Nile virus/growth & development , Yellow fever virus/drug effects , Yellow fever virus/genetics , Yellow fever virus/growth & development , Zika Virus/drug effects , Zika Virus/genetics , Zika Virus/growth & development
18.
Bull World Health Organ ; 94(12): 880-892, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27994281

ABSTRACT

OBJECTIVE: To examine the diagnostic performance of real-time reverse transcription (RT)-polymerase chain reaction (PCR) assays for Zika virus detection. METHODS: We compared seven published real-time RT-PCR assays and two new assays that we have developed. To determine the analytical sensitivity of each assay, we constructed a synthetic universal control ribonucleic acid (uncRNA) containing all of the assays' target regions on one RNA strand and spiked human blood or urine with known quantities of African or Asian Zika virus strains. Viral loads in 33 samples from Zika virus-infected patients were determined by using one of the new assays. FINDINGS: Oligonucleotides of the published real-time RT-PCR assays, showed up to 10 potential mismatches with the Asian lineage causing the current outbreak, compared with 0 to 4 mismatches for the new assays. The 95% lower detection limit of the seven most sensitive assays ranged from 2.1 to 12.1 uncRNA copies/reaction. Two assays had lower sensitivities of 17.0 and 1373.3 uncRNA copies/reaction and showed a similar sensitivity when using spiked samples. The mean viral loads in samples from Zika virus-infected patients were 5 × 104 RNA copies/mL of blood and 2 × 104 RNA copies/mL of urine. CONCLUSION: We provide reagents and updated protocols for Zika virus detection suitable for the current outbreak strains. Some published assays might be unsuitable for Zika virus detection, due to the limited sensitivity and potential incompatibility with some strains. Viral concentrations in the clinical samples were close to the technical detection limit, suggesting that the use of insensitive assays will cause false-negative results.


Subject(s)
Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Zika Virus Infection/diagnosis , Humans , Sensitivity and Specificity
19.
J Virol ; 88(5): 2858-66, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24371047

ABSTRACT

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that has caused severe epidemics in Africa and Asia and occasionally in Europe. As of today, there is no licensed vaccine available to prevent CHIKV infection. Here we describe the development and evaluation of novel CHIKV vaccine candidates that were attenuated by deleting a large part of the gene encoding nsP3 or the entire gene encoding 6K and were administered as viral particles or infectious genomes launched by DNA. The resulting attenuated mutants were genetically stable and elicited high magnitudes of binding and neutralizing antibodies as well as strong T cell responses after a single immunization in C57BL/6 mice. Subsequent challenge with a high dose of CHIKV demonstrated that the induced antibody responses protected the animals from viremia and joint swelling. The protective antibody response was long-lived, and a second homologous immunization further enhanced immune responses. In summary, this report demonstrates a straightforward means of constructing stable and efficient attenuated CHIKV vaccine candidates that can be administered either as viral particles or as infectious genomes launched by DNA. IMPORTANCE: Similar to other infectious diseases, the best means of preventing CHIKV infection would be by vaccination using an attenuated vaccine platform which preferably raises protective immunity after a single immunization. However, the attenuated CHIKV vaccine candidates developed to date rely on a small number of attenuating point mutations and are at risk of being unstable or even sensitive to reversion. We report here the construction and preclinical evaluation of novel CHIKV vaccine candidates that have been attenuated by introducing large deletions. The resulting mutants proved to be genetically stable, attenuated, highly immunogenic, and able to confer durable immunity after a single immunization. Moreover, these mutants can be administered either as viral particles or as DNA-launched infectious genomes, enabling evaluation of the most feasible vaccine modality for a certain setting. These CHIKV mutants could represent stable and efficient vaccine candidates against CHIKV.


Subject(s)
Alphavirus Infections/immunology , Chikungunya virus/immunology , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Alphavirus Infections/prevention & control , Alphavirus Infections/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya Fever , Chikungunya virus/genetics , Female , Gene Order , Genome, Viral , Immunity, Cellular , Immunization , Immunization, Secondary , Mice , Mice, Inbred C57BL , Mutation , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
20.
J Virol ; 88(22): 13333-43, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25210177

ABSTRACT

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that causes debilitating arthralgia in humans. Here we describe the development and testing of novel DNA replicon and protein CHIKV vaccine candidates and evaluate their abilities to induce antigen-specific immune responses against CHIKV. We also describe homologous and heterologous prime-boost immunization strategies using novel and previously developed CHIKV vaccine candidates. Immunogenicity and efficacy were studied in a mouse model of CHIKV infection and showed that the DNA replicon and protein antigen were potent vaccine candidates, particularly when used for priming and boosting, respectively. Several prime-boost immunization strategies eliciting unmatched humoral and cellular immune responses were identified. Further characterization by antibody epitope mapping revealed differences in the qualitative immune responses induced by the different vaccine candidates and immunization strategies. Most vaccine modalities resulted in complete protection against wild-type CHIKV infection; however, we did identify circumstances under which certain immunization regimens may lead to enhancement of inflammation upon challenge. These results should help guide the design of CHIKV vaccine studies and will form the basis for further preclinical and clinical evaluation of these vaccine candidates. IMPORTANCE: As of today, there is no licensed vaccine to prevent CHIKV infection. In considering potential new vaccine candidates, a vaccine that could raise long-term protective immunity after a single immunization would be preferable. While humoral immunity seems to be central for protection against CHIKV infection, we do not yet fully understand the correlates of protection. Therefore, in the absence of a functional vaccine, there is a need to evaluate a number of different candidates, assessing their merits when they are used either in a single immunization or in a homologous or heterologous prime-boost modality. Here we show that while single immunization with various vaccine candidates results in potent responses, combined approaches significantly enhance responses, suggesting that such approaches need to be considered in the further development of an efficacious CHIKV vaccine.


Subject(s)
Chikungunya Fever/prevention & control , Chikungunya virus/immunology , Immunization/methods , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Chikungunya Fever/immunology , Disease Models, Animal , Female , Leukocytes, Mononuclear/immunology , Mice, Inbred C57BL , Survival Analysis , Vaccines, DNA/administration & dosage , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL