Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Neuroimage ; 104: 287-300, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25149849

ABSTRACT

Cerebral microbleeds (CMBs) have emerged as a new imaging marker of small vessel disease. Composed of hemosiderin, CMBs are paramagnetic and can be detected with MRI sequences sensitive to magnetic susceptibility (typically, gradient recalled echo T2* weighted images). Nevertheless, their identification remains challenging on T2* magnitude images because of confounding structures and lesions. In this context, T2* phase image may play a key role in better characterizing CMBs because of its direct relationship with local magnetic field variations due to magnetic susceptibility difference. To address this issue, susceptibility-based imaging techniques were proposed, such as Susceptibility Weighted Imaging (SWI) and Quantitative Susceptibility Mapping (QSM). But these techniques have not yet been validated for 2D clinical data in multicenter settings. Here, we introduce 2DHF, a fast 2D phase processing technique embedding both unwrapping and harmonic filtering designed for data acquired in 2D, even with slice-to-slice inconsistencies. This method results in internal field maps which reveal local field details due to magnetic inhomogeneity within the region of interest only. This technique is based on the physical properties of the induced magnetic field and should yield consistent results. A synthetic phantom was created for numerical simulations. It simulates paramagnetic and diamagnetic lesions within a 'brain-like' tissue, within a background. The method was evaluated on both this synthetic phantom and multicenter 2D datasets acquired in standardized clinical setting, and compared with two state-of-the-art methods. It proved to yield consistent results on synthetic images and to be applicable and robust on patient data. As a proof-of-concept, we finally illustrate that it is possible to find a magnetic signature of CMBs and CMCs on internal field maps generated with 2DHF on 2D clinical datasets that give consistent results with CT-scans in a subsample of 10 subjects acquired with both modalities.


Subject(s)
Cerebral Hemorrhage/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Databases, Factual , Humans
2.
Neurology ; 90(12): e1057-e1065, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29444966

ABSTRACT

OBJECTIVE: To reveal the prevalence and localization of cerebral microbleeds (CMBs) in the 3 main variants of primary progressive aphasia (PPA) (logopenic, semantic, and nonfluent/agrammatic), to identify the relationship with underlying Alzheimer pathology, and to explore whether CMBs contribute to language breakdown. METHODS: We used a cross-sectional design in a multicenter cohort of 82 patients with PPA and 19 similarly aged healthy controls. MRI allowed for rating CMBs (2-dimensional gradient recalled echo T2*, susceptibility weighted imaging sequences) and white matter hyperintensities. CSF Alzheimer disease biomarker analyses available in 63 of the 82 patients provided the stratification of PPA into subgroups with patients who had or did not have probable underlying Alzheimer pathology. RESULTS: The prevalence of CMBs was higher in patients with PPA (28%) than in controls (16%). They were more prevalent in logopenic PPA (50%) than in semantic PPA (18%) and nonfluent/agrammatic PPA (17%). The localization of CMBs was mainly lobar (81%) with no difference between the PPA variants. CMBs were more frequent in PPA patients with positive than with negative CSF Alzheimer disease biomarkers (67% vs 20%). Patients with and without lobar CMBs had similar volumes of white matter hyperintensities. Language and general cognitive impairment in PPA was unrelated to CMB rates. CONCLUSIONS: CMB prevalence in PPA is higher than in healthy controls. CMBs were most prevalent in the logopenic variant, were related to underlying Alzheimer pathology, and did not affect the language/cognitive impairment. Our findings also suggest that CMB detection with MRI contributes to PPA variant diagnosis, especially of logopenic PPA, and provides an estimator of the underlying neuropathology.


Subject(s)
Aphasia, Primary Progressive/cerebrospinal fluid , Aphasia, Primary Progressive/diagnostic imaging , Brain/diagnostic imaging , Cerebral Hemorrhage/cerebrospinal fluid , Cerebral Hemorrhage/diagnostic imaging , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/epidemiology , Amyloid beta-Peptides/cerebrospinal fluid , Aphasia, Primary Progressive/epidemiology , Biomarkers/cerebrospinal fluid , Cerebral Hemorrhage/epidemiology , Cohort Studies , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , Prevalence , tau Proteins/cerebrospinal fluid
3.
Neuroimage Clin ; 15: 274-283, 2017.
Article in English | MEDLINE | ID: mdl-28560152

ABSTRACT

INTRODUCTION/PURPOSE: In vivo detection of cerebral microbleeds (CMBs) from T2* gradient recalled echo (GRE) magnitude image suffers from low specificity, modest inter-rater reproducibility and is biased by its sensitivity to acquisition parameters. New methods were proposed for improving this identification, but they mostly rely on 3D acquisitions, not always feasible in clinical practice. A fast 2D phase processing technique for computing internal field maps (IFM) has been shown to make it possible to characterize CMBs through their magnetic signature in routine clinical setting, based on 2D multi-slice acquisitions. However, its clinical interest for CMBs identification with respect to more common images remained to be assessed. To do so, systematic experiments were undertaken to compare the ratings obtained by trained observers with several image types, T2* magnitude, Susceptibility Weighted Imaging reconstructions (SWI) and IFM built from the same T2*-weighted acquisition. MATERIALS/METHODS: 15 participants from the MEMENTO multi-center cohort were selected: six subjects with numerous CMBs (20 ± 6 CMBs), five subjects with a few CMBs (2 ± 1 CMBs) and four subjects without CMB. 2D multi-slice T2* GRE sequences were acquired on Philips and Siemens 3T systems. After pilot experiments, T2* magnitude, Susceptibility Weighted Imaging (SWI) minimum intensity projection (mIP) on three slices and IFM were considered for the rating experiments. A graphical user interface (GUI) was designed in order to consistently display images in random order. Six raters of various background and expertise independently selected "definite" or "possible" CMBs. Rating results were compared with respect to a specific consensus reference, on both lesion and subject type points of view. RESULTS: IFM yielded increased sensitivity and decreased false positives rate (FPR) for CMBs identification compared to T2* magnitude and SWI-mIP images. Inter-rater variability was decreased with IFM when identifying subjects with numerous lesions, with only a limited increase in rating time. IFM thus appears as an interesting candidate to improve CMBs identification in clinical setting.


Subject(s)
Cerebral Hemorrhage/diagnostic imaging , Image Interpretation, Computer-Assisted/standards , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL