Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Molecules ; 29(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257250

ABSTRACT

Tuberculosis (TB) remains one of the leading global causes of mortality. Several methods have been established to detect anti-TB agents in human plasma and serum. However, there is a notable absence of studies analyzing TB drugs in urine. Thus, our objective was to validate a method for quantifying first-line anti-TB agents: isoniazid (INH), pyrazinamide (PZA), ethambutol (ETH), and rifampicin (RIF), along with its metabolite 25-desacetylrifampicin, and degradation products: rifampicin quinone and 3-formyl-rifampicin in 10 µL of urine. Chromatographic separation was achieved using a Kinetex Polar C18 analytical column with gradient elution (5 mM ammonium acetate and acetonitrile with 0.1% formic acid). Mass spectrometry detection was carried out using a triple-quadrupole tandem mass spectrometer operating in positive ion mode. The lower limit of quantification (LLOQ) was 0.5 µg/mL for INH, PZA, ETH, and RIF, and 0.1 µg/mL for RIF's metabolites and degradation products. The method was validated following FDA guidance criteria and successfully applied to the analysis of the studied compounds in urine of TB patients. Additionally, we conducted a stability study of the anti-TB agents under various pH and temperature conditions to mimic the urine collection process in different settings (peripheral clinics or central laboratories).


Subject(s)
Drug Monitoring , Rifampin , Humans , Rifampin/therapeutic use , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Antitubercular Agents/therapeutic use , Ethambutol
2.
Antimicrob Agents Chemother ; 67(11): e0093223, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37877727

ABSTRACT

Variable pharmacokinetics of rifampin in tuberculosis (TB) treatment can lead to poor outcomes. Urine spectrophotometry is simpler and more accessible than recommended serum-based drug monitoring, but its optimal efficacy in predicting serum rifampin underexposure in adults with TB remains uncertain. Adult TB patients in New Jersey and Virginia receiving rifampin-containing regimens were enrolled. Serum and urine samples were collected over 24 h. Rifampin serum concentrations were measured using validated liquid chromatography-tandem mass spectrometry, and total exposure (area under the concentration-time curve) over 24 h (AUC0-24) was determined through noncompartmental analysis. The Sunahara method was used to extract total rifamycins, and rifampin urine excretion was measured by spectrophotometry. An analysis of 58 eligible participants, including 15 (26%) with type 2 diabetes mellitus, demonstrated that urine spectrophotometry accurately identified subtarget rifampin AUC0-24 at 0-4, 0-8, and 0-24 h. The area under the receiver operator characteristic curve (AUC ROC) values were 0.80 (95% CI 0.67-0.90), 0.84 (95% CI 0.72-0.94), and 0.83 (95% CI 0.72-0.93), respectively. These values were comparable to the AUC ROC of 2 h serum concentrations commonly used for therapeutic monitoring (0.82 [95% CI 0.71-0.92], P = 0.6). Diabetes status did not significantly affect the AUC ROCs for urine in predicting subtarget rifampin serum exposure (P = 0.67-0.92). Spectrophotometric measurement of urine rifampin excretion within the first 4 or 8 h after dosing is a simple and cost-effective test that accurately predicts rifampin underexposure. This test provides critical information for optimizing tuberculosis treatment outcomes by facilitating appropriate dose adjustments.


Subject(s)
Diabetes Mellitus, Type 2 , Tuberculosis , Adult , Humans , Rifampin/pharmacokinetics , Antitubercular Agents/pharmacokinetics , Prospective Studies , Diabetes Mellitus, Type 2/drug therapy , Tuberculosis/diagnosis , Tuberculosis/drug therapy
3.
Pharm Res ; 40(5): 1223-1238, 2023 May.
Article in English | MEDLINE | ID: mdl-36949370

ABSTRACT

PURPOSE: To evaluate how obesity affects the pharmacokinetics of human IgG following subcutaneous (SC) and intravenous (IV) administration to rats and the homeostasis of endogenous rat IgG. METHODS: Differences in body weight and size, body composition, and serum concentration of endogenous rat IgG in male Zucker obese (ZUC-FA/FA) and control (ZUC-LEAN) rats were measured from the age of 5 weeks up to 30 weeks. At the age of 23-24 weeks animals received a single IV or SC dose of human IgG (1 g/kg of total body weight), and serum pharmacokinetics was followed for 7 weeks. A mechanistic model linking obesity-related changes in pharmacokinetics with animal growth and changes in body composition was developed. RESULTS: Significant differences were observed in both endogenous and exogenous IgG pharmacokinetics between obese and control groups. The AUC for human IgG was lower in obese groups (57.6% of control after IV and 48.1% after SC dosing), and clearance was 1.75-fold higher in obese animals. The mechanistic population model successfully captured the data and included several major components: endogenous rat IgG homeostasis with age-dependent synthesis rate; competition of human IgG and endogenous rat IgG for FcRn binding and its effect on endogenous rat IgG concentrations following injection of a high dose of human IgG; and the effect of body size and composition (changing over time and dependent on the obesity status) on pharmacokinetic parameters. CONCLUSIONS: We identified important obesity-induced changes in the pharmacokinetics of IgG. Results can potentially facilitate optimization of the dosing of IgG-based therapeutics in the obese population.


Subject(s)
Immunoglobulin G , Obesity , Rats , Male , Humans , Animals , Infant , Rats, Zucker , Obesity/drug therapy , Obesity/metabolism , Immunoglobulin G/therapeutic use , Body Weight
4.
J Am Chem Soc ; 144(46): 21304-21317, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36367536

ABSTRACT

This study addresses well-known shortcomings of poly(ethylene glycol) (PEG)-based conjugates. PEGylation is by far the most common method employed to overcome immunogenicity and suboptimal pharmacokinetics of, for example, therapeutic proteins but has significant drawbacks. First, PEG offers no protection from denaturation during lyophilization, storage, or oxidation (e.g., by biological oxidants, reactive oxygen species); second, PEG's inherent immunogenicity, leading to hypersensitivity and accelerated blood clearance (ABC), is a growing concern. We have here developed an 'active-stealth' polymer, poly(thioglycidyl glycerol)(PTGG), which in human plasma is less immunogenic than PEG (35% less complement activation) and features a reactive oxygen species-scavenging and anti-inflammatory action (∼50% less TNF-α in LPS-stimulated macrophages at only 0.1 mg/mL). PTGG was conjugated to proteins via a one-pot process; molar mass- and grafting density-matched PTGG-lysozyme conjugates were superior to their PEG analogues in terms of enzyme activity and stability against freeze-drying or oxidation; the latter is due to sacrificial oxidation of methionine-mimetic PTGG chains. Both in mice and rats, PTGG-ovalbumin displayed circulation half-lives up to twice as long as PEG-ovalbumin, but most importantly─and differently from PEG─without any associated ABC effect seen either in the time dependency of blood concentration, in the liver/splenic accumulation, or in antipolymer IgM/IgG titers. Furthermore, similar pharmacokinetic results were obtained with PTGGylated/PEGylated liposomal nanocarriers. PTGG's 'active-stealth' character therefore makes it a highly promising alternative to PEG for conjugation to biologics or nanocarriers.


Subject(s)
Polyethylene Glycols , Polymers , Rats , Mice , Humans , Animals , Polyethylene Glycols/metabolism , Polymers/pharmacology , Glycerol , Reactive Oxygen Species , Ovalbumin , Protein Stability
5.
Drug Metab Dispos ; 50(4): 468-477, 2022 04.
Article in English | MEDLINE | ID: mdl-34965924

ABSTRACT

Fibroblast growth factors 15 (FGF15) and 19 (FGF19) are endocrine growth factors that play an important role in maintaining bile acid homeostasis. FGF15/19-based therapies are currently being tested in clinical trials for the treatment of nonalcoholic steatohepatitis and cholestatic liver diseases. To determine the physiologic impact of long-term elevations of FGF15/19, a transgenic mouse model with overexpression of Fgf15 (Fgf15 Tg) was used in the current study. The RNA sequencing (RNA-seq) analysis revealed elevations of the expression of several genes encoding phase I drug metabolizing enzymes (DMEs), including Cyp2b10 and Cyp3a11, in Fgf15 Tg mice. We found that the induction of several Cyp2b isoforms resulted in increased function of CYP2B in microsomal metabolism and pharmacokinetics studies. Because the CYP2B family is known to be induced by constitutive androstane receptor (CAR), to determine the role of CAR in the observed inductions, we crossed Fgf15 Tg mice with CAR knockout mice and found that CAR played a minor role in the observed alterations in DME expression. Interestingly, we found that the overexpression of Fgf15 in male mice resulted in a phenotypical switch from the male hepatic expression pattern of DMEs to that of female mice. Differences in secretion of growth hormone (GH) between male and female mice are known to drive sexually dimorphic, STAT5b-dependent expression patterns of hepatic genes. We found that male Fgf15 Tg mice presented with many features similar to GH deficiency, including lowered body length and weight, Igf-1 and Igfals expression, and STAT5 signaling. SIGNIFICANCE STATEMENT: The overexpression of Fgf15 in mice causes an alteration in DMEs at the mRNA, protein, and functional levels, which is not entirely due to CAR activation but associated with lower GH signaling.


Subject(s)
Fibroblast Growth Factors , Non-alcoholic Fatty Liver Disease , Animals , Bile Acids and Salts/metabolism , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism
6.
Pharm Res ; 39(8): 1867-1880, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35778631

ABSTRACT

PURPOSE: To evaluate the duration of effect of rHuPH20 on SC absorption of cetuximab and to develop a mechanistic pharmacokinetic model linking the kinetics of rHuPH20 action with hyaluronan (HA) homeostasis and absorption of cetuximab from the SC space. METHODS: Serum pharmacokinetics of cetuximab was evaluated after IV and SC dosing at 0.4 and 10 mg/kg (control groups). In test groups, SC cetuximab was administered simultaneously with rHuPH20 (Co-Injection) or 12 h after injection of rHuPH20 (Pre-Injection). Mechanistic pharmacokinetic model was developed to simultaneously capture cetuximab kinetics in all groups. RESULTS: Administration of rHuPH20 resulted in a faster absorption of cetuximab; the difference between co-injection and pre-injection groups appeared to be dependent on the dose level. The model combined three major components: kinetics of rHuPH20 at SC site; HA homeostasis and its disruption by rHuPH20; and cetuximab systemic disposition and the effect of HA disruption on cetuximab SC absorption. The model provided good description of experimental data obtained in this study and collected previously. CONCLUSIONS: Proposed model can serve as a potential translational framework for capturing the effect of rHuPH20 across multiple preclinical species and in human studies and can be used for optimization of SC delivery of biotherapeutics.


Subject(s)
Hyaluronic Acid , Hyaluronoglucosaminidase , Animals , Cetuximab/pharmacology , Humans , Injections, Subcutaneous , Rats , Recombinant Proteins
7.
Br J Clin Pharmacol ; 87(2): 516-526, 2021 02.
Article in English | MEDLINE | ID: mdl-32495990

ABSTRACT

AIMS: Changes in serotonergic sensory modulation associated with overexpression of 5-HT3 receptors in the central nervous system (CNS) have been implicated in the pathophysiology of neuropathic pain after peripheral nerve damage. 5-HT3 receptor antagonists such as ondansetron can potentially alleviate neuropathic pain, but have limited effectiveness, due potentially to limited CNS access. However, there is currently limited information on CNS disposition of systemically-administered 5-HT3 receptor antagonists. This study evaluated the cerebrospinal fluid (CSF) disposition of ondansetron, as a surrogate of CNS penetration. METHODS: Fifteen patients were given a single 16 mg intravenous 15 minute infusion of ondansetron, followed by serial blood and a single CSF sampling. Population pharmacokinetic (PK) modelling was implemented to describe the average and individual plasma and CSF profiles of ondansetron. A two-compartmental model was used to capture ondansetron plasma PK with a single CSF compartment to describe distribution to the CNS. RESULTS: The individual model-estimated CSF to plasma partition coefficients of ondansetron were between 0.09 and 0.20. These values were mirrored in the calculated CSF penetration ratios, ranging from 0.08 to 0.26. CONCLUSIONS: After intravenous administration, CSF concentrations of ondansetron were approximately 7-fold lower than those observed in the plasma. A model could be developed to describe individual CSF concentration-time profiles of ondansetron based on a single CSF data point. The low CSF penetration of ondansetron may explain its limited analgesic effectiveness, and affords an opportunity to explore enhancing its CNS penetration for targeting conditions such as neuropathic pain.


Subject(s)
Neuralgia , Ondansetron , Administration, Intravenous , Humans , Infusions, Intravenous , Neuralgia/drug therapy , Plasma
8.
BMC Nephrol ; 22(1): 389, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34809582

ABSTRACT

BACKGROUND: The primary objective of this study aims to test patient factors, with a focus on cardiometabolic disease, influencing the performance of the Cockcroft-Gault equation in estimating glomerular filtration rate. METHODS: A cohort study was performed using data from adult patients with both a 24-h urine creatinine collection and a serum creatinine available. Creatinine clearance was calculated for each patient using the Cockcroft-Gault, Modified Diet in Renal Disease, and Chronic Kidney Disease Epidemiology Collaboration equations and estimates were compared to the measured 24-h urine creatinine clearance. In addition, new prediction equations were developed. RESULTS: In the overall study population (n = 484), 44.2% of patients were obese, 44.0% had diabetes, and 30.8% had dyslipidemia. A multivariable model which incorporating patient characteristics performed the best in terms of correlation to measured 24-h urine creatinine clearance, accuracy, and error. The modified Cockcroft-Gault equation using lean body weight performed best in the overall population, the obese subgroup, and the dyslipidemia subgroup in terms of strength of correlation, mean bias, and accuracy. CONCLUSIONS: Regardless of strategy used to calculate creatinine clearance, residual error was present suggesting novel methods for estimating glomerular filtration rate are urgently needed.


Subject(s)
Kidney Function Tests/methods , Kidney Function Tests/statistics & numerical data , Kidney/physiopathology , Metabolic Syndrome/physiopathology , Age Factors , Aged , Body Weight , Creatinine/blood , Creatinine/urine , Female , Humans , Male , Metabolic Clearance Rate , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Middle Aged , Retrospective Studies
9.
Pharm Res ; 37(10): 205, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32989520

ABSTRACT

PURPOSE: Modulation of 5-HT3 receptor in the central nervous system (CNS) is a promising approach for treatment of neuropathic pain. The goal was to evaluate the role of P-glycoprotein (Pgp) in limiting exposure of different parts of the CNS to ondansetron (5-HT3 receptor antagonist) using wild-type and genetic knockout rat model. METHODS: Plasma pharmacokinetics and CNS (brain, spinal cord, and cerebrospinal fluid) disposition was studied after single 10 mg/kg intravenous dose. RESULTS: Pgp knockout resulted in significantly higher concentrations of ondansetron in all tested regions of the CNS at most of the time points. The mean ratio of the concentrations between KO and WT animals was 2.39-5.48, depending on the region of the CNS. Male and female animals demonstrated some difference in ondansetron plasma pharmacokinetics and CNS disposition. Mechanistic pharmacokinetic model that included two systemic disposition and three CNS compartments (with intercompartmental exchange) was developed. Pgp transport was incorporated as an efflux from the brain and spinal cord to the central compartment. The model provided good simultaneous description of all data sets, and all parameters were estimated with sufficient precision. CONCLUSIONS: The study provides important quantitative information on the role of Pgp in limiting ondansetron exposure in various regions of the CNS using data from wild-type and Pgp knockout rats. CSF drug concentrations, as a surrogate to CNS exposure, are likely to underestimate the effect of Pgp on drug penetration to the brain and the spinal cord.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Central Nervous System/metabolism , Ondansetron/pharmacokinetics , Serotonin 5-HT3 Receptor Antagonists/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/deficiency , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Brain/metabolism , Female , Male , Mice, Knockout , Models, Animal , Neuralgia/metabolism , Ondansetron/blood , Ondansetron/cerebrospinal fluid , Rats , Rats, Sprague-Dawley , Serotonin 5-HT3 Receptor Antagonists/blood , Serotonin 5-HT3 Receptor Antagonists/cerebrospinal fluid , Spinal Cord/metabolism
10.
Pharm Res ; 37(8): 155, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32720159

ABSTRACT

PURPOSE: The purpose of this work was to investigate the role of the lymphatic system in the pharmacokinetics of etanercept, a fusion protein. METHODS: Etanercept 1 mg/kg was administered intravenously (IV) and subcutaneously (SC) to thoracic lymph duct-cannulated and sham-operated control rats. Blood and lymph samples were obtained for up to 6 days. RESULTS: Model-based SC bioavailability of etanercept was 65.2% in the control group. In lymph-cannulated rats, etanercept concentration in the lymph was consistently lower than in serum following IV dosing; and the concentration in the lymph was significantly higher than in serum after SC injection. The absorption occurred predominantly through the lymphatic pathway (82.7%), and only 17.3% by direct uptake into the central compartment (blood pathway). Lymphatic cannulation reduced the area under the serum concentration-time curve by 28% in IV group and by 91% in SC group. A mechanistic pharmacokinetic model that combined dual absorption pathways with redistribution of the systemically available protein drug into lymph was developed. The model successfully captured serum and lymph data in all groups simultaneously, and all parameters were estimated with sufficient precision. CONCLUSIONS: Lymphatic system was shown to play an essential role in systemic disposition and SC absorption of etanercept.


Subject(s)
Cannula , Etanercept/chemistry , Etanercept/pharmacokinetics , Lymphatic System/drug effects , Animals , Area Under Curve , Biological Availability , Etanercept/administration & dosage , Injections, Intravenous , Injections, Subcutaneous , Jugular Veins/metabolism , Lymph/drug effects , Lymph/metabolism , Male , Models, Biological , Rats, Sprague-Dawley , Thoracic Duct/metabolism , Time Factors
11.
Biopharm Drug Dispos ; 41(4-5): 192-205, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32342986

ABSTRACT

The aim of the study was to develop a physiologically-based pharmacokinetic (PBPK) model to describe and predict whole-body disposition of doxorubicin following intravenous administration. The PBPK model was established using previously published data in mice and included 10 tissue compartments: lungs, heart, brain, muscle, kidneys, pancreas, intestine, liver, spleen, adipose tissue, and plasma. Individual tissues were described by either perfusion-limited or permeability-limited models. All parameters were simultaneously estimated and the final model was able to describe murine data with good precision. The model was used for predicting doxorubicin disposition in rats, rabbits, dogs, and humans using interspecies scaling approaches and was qualified using plasma and tissue observed data. Reasonable prediction of the plasma pharmacokinetics and tissue distribution was achieved across all species. In conclusion, the PBPK model developed based on a rich dataset obtained from mice, was able to reasonably predict the disposition of doxorubicin in other preclinical species and humans. Applicability of the model for special populations, such as patients with hepatic impairment, was also demonstrated. The proposed model will be a valuable tool for optimization of exposure profiles of doxorubicin in human patients.


Subject(s)
Antibiotics, Antineoplastic/pharmacokinetics , Doxorubicin/pharmacokinetics , Models, Biological , Adult , Animals , Antibiotics, Antineoplastic/blood , Dogs , Doxorubicin/blood , Female , Humans , Male , Mice , Rabbits , Rats , Species Specificity , Tissue Distribution
12.
Biomed Chromatogr ; 33(11): e4653, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31322284

ABSTRACT

Ondansetron, a widely used antiemetic agent, is a P-glycoprotein (P-gp) substrate and therefore expression of P-gp at the blood-brain barrier limits its distribution to the central nervous system (CNS), which was observed to be reversed by coadministration with P-gp inhibitors. Tariquidar is a potent and selective third-generation P-gp inhibitor, and coadministration with ondansetron has shown improved ondansetron distribution to the CNS. There is currently no reported bioanalytical method for simultaneously quantifying ondansetron with a third-generation P-gp inhibitor. Therefore, we aimed to develop and validate a method for ondansetron and tariquidar in rat and human plasma samples. A full validation was performed for both ondansetron and tariquidar, and sample stability was tested under various storage conditions. To demonstrate its utility, the method was applied to a preclinical pharmacokinetic study following coadministration of ondansetron and tariquidar in rats. The presented method will be valuable in pharmacokinetic studies of ondansetron and tariquidar in which simultaneous determination may be required. In addition, this is the first report of a bioanalytical method validated for quantification of tariquidar in plasma samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Ondansetron/blood , Quinolines/blood , Animals , Humans , Limit of Detection , Linear Models , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Spectrophotometry, Ultraviolet
13.
J Pharmacokinet Pharmacodyn ; 45(4): 577-592, 2018 08.
Article in English | MEDLINE | ID: mdl-29671170

ABSTRACT

The objective was to develop a physiologically-based pharmacokinetic (PBPK) model to characterize the whole-body disposition of paclitaxel (formulated in Cremophor EL and ethanol-Taxol®) in mice and to evaluate the utility of this model for predicting pharmacokinetics in other species. Published studies that reported paclitaxel plasma and tissue concentration-time data following single intravenous bolus administration of Taxol® to mice were used; and the PBPK model included plasma, liver, lungs, kidneys, spleen, heart, gastrointestinal tract, and remainder compartments. The final model resulted in a good description of the experimental plasma and tissues data in mice, where all tissues were represented by a single compartment, except the remainder that included two sub-compartments. The predictive performance of the PBPK model was assessed by evaluating its utility in predicting pharmacokinetics of paclitaxel in rats and humans. The relationship between species body weights (mice, rats, rabbits, and humans) and plasma clearance was determined by power-based regression, and resulting allometric exponent was 0.86. The model demonstrated reasonable predictions of plasma and tissue paclitaxel concentration-time profiles in rats and plasma profiles in humans. The proposed PBPK model represents an important basis that can be further utilized for characterization of novel formulations of paclitaxel.


Subject(s)
Paclitaxel/pharmacokinetics , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Models, Biological , Rabbits , Rats , Tissue Distribution
14.
Thromb J ; 14: 10, 2016.
Article in English | MEDLINE | ID: mdl-27158246

ABSTRACT

BACKGROUND: Dabigatran etexilate may be underutilized in geriatric patients because of inadequate clinical experience in individuals with severe renal impairment and post-marketing reports of bleeding events. Assessing the degree of anticoagulation may improve the risk:benefit ratio for dabigatran. The aim of this prospective study was to identify whether therapeutic drug monitoring of dabigatran anticoagulant activity using a chromogenic anti-factor IIa assay is a viable option for therapy individualization. METHODS: Plasma dabigatran concentration was assessed in nine patients with nonvalvular atrial fibrillation aged 75 years or older currently receiving dabigatran etexilate for prevention of stroke, using an anti-factor IIa chromogenic assay and HPLC-MS/MS. Trough concentrations were evaluated on two separate occasions to determine intrapatient variation. RESULTS: Blood was collected at 13.1 ± 2.3 h (mean ± SD) post dose from patients prescribed dabigatran etexilate 150 mg twice daily (5/9 patients) or dabigatran etexilate 75 mg twice daily (4/9 patients). Results from the anti-factor IIa chromogenic assay correlated with dabigatran concentrations as assessed by HPLC-MS/MS (r (2) = 0.81, n = 16). There was no correlation between dabigatran trough values taken at separate visits (r (2) = 0.002, n = 7). Furthermore, there was no correlation found between the drug concentrations and patients' renal function determined by both creatinine and cystatin-C based equations. None of the patients enrolled in the study were in the proposed on-therapy trough range during at least one visit. CONCLUSION: The chromogenic anti-factor IIa assay demonstrated similar performance in quantifying dabigatran plasma trough concentrations to HPLC-MS/MS. Single measurement of dabigatran concentration by either of two methods during routine visits may not be reliable in identifying patients at consistently low or high dabigatran concentrations.

15.
Anesth Analg ; 122(5): 1663-72, 2016 May.
Article in English | MEDLINE | ID: mdl-27057797

ABSTRACT

BACKGROUND: Liposomal local anesthetics are limited by a short liposomal shelf-life, even when under refrigeration. We describe a novel proliposomal ropivacaine that produces liposomes in situ, only after exposure to aqueous media. METHODS: In vitro: Nanoparticles were assessed (particle size distribution analyzer, cryo-transmission electron microscopy) at baseline and after exposure to saline/plasma. TOXICITY: In porcine wound healing study (n = 12), healing was assessed by photography, clinical assessment, and histology. Pharmacodynamics: Seventeen young piglets were randomly assigned to plain 0.5% ropivacaine (n = 5), proliposomal 4% ropivacaine (n = 6), or sham (n = 6). Tactile threshold was assessed using von Frey filaments applied to the surgical wound; the nonoperated skin was used as a control. Tactile threshold over time was determined using area under the curve (AUC) and assessed by 1-way analysis of variance. PHARMACOKINETICS: 8 young piglets were randomly assigned to plain 0.5% (25 mg, n = 4) or proliposomal 4% (200 mg, n = 4) ropivacaine. Plasma ropivacaine was assessed by high-performance liquid chromatography at baseline and at intervals over 36 hours. Paired ropivacaine concentration (from wound exudate and plasma) was obtained at 96 hours. Data were analyzed using noncompartmental and compartmental models. RESULTS: In vitro: On exposure to saline and plasma, the study drug was transformed from a homogenous oil to an emulsion containing liposomes of approximately 1.4-µm diameter; this effect was dilution dependent and stable over time. TOXICITY: All wounds healed well; no effect of drug group was observed. Pharmacodynamics: Plain and proliposomal ropivacaine provided sensory anesthesia for approximately 6 and 30 hours, respectively. There was an approximately 7-fold increase in the AUC of anesthesia for proliposomal ropivacaine compared with plain ropivacaine (mean difference, 1010; 95% confidence interval [CI], 625-1396 g·h/mm; P < 0.0001). PHARMACOKINETICS: There was no difference in Cmax (2.31 ± 0.74 vs 2.32 ± 0.46 mg/L), despite an approximately 8-fold difference in dose. However, proliposomal ropivacaine was associated with a marked prolongation of Tmax (6.50 ± 6.35 vs 0.5 ± 0.0 hours), terminal half-life (16.07 ± 5.38 vs 3.46 ± 0.88 hours; P = 0.0036), and ropivacaine-time AUC (47.72 ± 7.16 vs 6.36 ± 2.07 h·mg/L; P < 0.0001), when compared with plain ropivacaine. The proliposomal formulation provided an approximately 250-fold higher ropivacaine concentration in the surgical wound (mean difference, 3783 ng/mL; 95% CI, 1708-5858; P = 0.001) and an approximately 25-fold higher wound:plasma ropivacaine concentration ratio (mean difference, 126; 95% CI 38-213; P = 0.011). CONCLUSIONS: Proliposomal ropivacaine exerted prolonged anesthesia with delayed elimination, typical for liposomal drugs. The advantage of this novel proliposomal ropivacaine is its ease of preparation and its extended shelf-stability (>2 years) at room temperature.


Subject(s)
Amides/administration & dosage , Amides/pharmacokinetics , Anesthetics, Local/administration & dosage , Anesthetics, Local/pharmacokinetics , Pain Threshold/drug effects , Skin/drug effects , Wounds, Penetrating/drug therapy , Amides/blood , Amides/chemistry , Anesthetics, Local/blood , Anesthetics, Local/chemistry , Animals , Area Under Curve , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Disease Models, Animal , Drug Stability , Emulsions , Injections, Subcutaneous , Liposomes , Metabolic Clearance Rate , Models, Biological , Nanoparticles , Oils , Ropivacaine , Skin/injuries , Skin/innervation , Skin/metabolism , Skin/pathology , Swine , Swine, Miniature , Temperature , Wound Healing/drug effects , Wounds, Penetrating/pathology , Wounds, Penetrating/physiopathology
16.
Anesth Analg ; 122(5): 1673-80, 2016 May.
Article in English | MEDLINE | ID: mdl-27057798

ABSTRACT

BACKGROUND: Slow-release liposomal formulations of local anesthetics prolong plasma redistribution and reduce peak plasma drug concentration, allowing safer administration of larger doses and further prolonging sensory effects. However, their clinical applicability is limited by expensive manufacture and liposomal leakage. Previously, we described the simple preparation of a novel proliposomal ropivacaine oil that produces multilamellar liposomal vesicles on exposure to aqueous media and that has a shelf-life of >2 years at room temperature. In this study, we present both pharmacodynamic and pharmacokinetic data in healthy volunteers after subcutaneous injection of this novel proliposomal preparation of ropivacaine. METHODS: In the pharmacodynamic phase of this study, 15 volunteers received 3 separate subcutaneous injections of 2.5 mL containing 1 of the following drugs: proliposomal 4% ropivacaine, plain 0.5% ropivacaine, and the ropivacaine-free proliposomal vehicle. Drugs were administered into the lower back, and their location was randomized and blinded; a separate area was used as an uninjected, open control. Experimental sensory assessment was made at repeated intervals over 72 hours using both pinprick sensation and experimental heat pain tolerance (assessed using quantitative sensory testing). In a separate pharmacokinetic phase of this study, 9 volunteers received subcutaneous injections of 2.5 mL of either proliposomal 4% ropivacaine (n = 6) or plain 0.5% ropivacaine (n = 3); these participants had plasma ropivacaine concentrations assessed at repeated intervals over 72 hours. RESULTS: The mean ± SE duration of pinprick anesthesia after proliposomal and plain ropivacaine administration lasted 28.8 ± 6.0 and 15.9 ± 3.5 hours, respectively (mean difference, 16.8 hours; 95% confidence interval, 10.0-23.7; P = 0.001). For experimental heat pain, the anesthesia duration was approximately 36 and 12 hours, respectively, with mean ± SE area under the curve of the normalized heat pain tolerance over time 55.0 ± 28.8 Δ°C·min for proliposomal ropivacaine and 9.6 ± 26.0 Δ°C·min for plain ropivacaine (mean difference, 64.6 Δ°C·min; 95% confidence interval, 10.2-119.0; P = 0.036). In the pharmacokinetic study, there was no significant difference in peak plasma concentration in the proliposomal ropivacaine group (164 ± 43 ng/mL compared with 100 ± 41 ng/mL in the plain ropivacaine group; P = 0.07) despite an 8-fold increase in ropivacaine dose in the proliposomal group. The 99% upper prediction limit for peak plasma concentrations (351 ng/mL proliposomal; 279 ng/mL plain) was well below the putative toxic plasma concentration for both groups. The mean ± SE terminal half-life and area under the curve for proliposomal ropivacaine versus plain ropivacaine were 13.8 ± 3.6 hours vs 5.9 ± 2.3 hours (P = 0.011) and 5090 ± 1476 h·ng/mL vs 593 ± 168 h·ng/mL (P = 0.0014), respectively. CONCLUSIONS: The prolonged pharmacodynamic effect of proliposomal ropivacaine, together with its delayed elimination and prolonged redistribution to plasma, is compatible to depot-related slow-release and similar to the performance of other liposomal local anesthetics. The advantage of the proliposomal oil is its ease of preparation and its extended shelf-stability at room temperature.


Subject(s)
Amides/administration & dosage , Amides/pharmacokinetics , Anesthetics, Local/administration & dosage , Anesthetics, Local/pharmacokinetics , Pain Threshold/drug effects , Adult , Amides/blood , Amides/chemistry , Anesthetics, Local/blood , Anesthetics, Local/chemistry , Area Under Curve , Chemistry, Pharmaceutical , Delayed-Action Preparations , Double-Blind Method , Drug Monitoring , Drug Stability , Half-Life , Healthy Volunteers , Humans , Injections, Subcutaneous , Israel , Liposomes , Male , Metabolic Clearance Rate , Models, Biological , Oils , Ropivacaine , Temperature , Young Adult
17.
J Pharmacokinet Pharmacodyn ; 42(4): 401-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26138223

ABSTRACT

3,3'-Diindolylmethane (DIM) has been investigated as a potential anti-cancer chemopreventive agent in many preclinical and clinical studies. In this study, we sought to characterize the pharmacokinetics of DIM and to build a pharmacokinetic (PK) and pharmacodynamic (PD) model of the DIM-induced gene expression of phase II drug metabolizing enzymes (DME), which potentially links DIM's molecular effects to its in vivo chemopreventive efficacy. DIM (10 mg/kg) was administered intravenously (i.v.) to male Sprague-Dawley rats and blood samples were collected at selected time points for 48 h. The plasma concentration of DIM was determined using a validated HPLC method. The mRNA expression of NQO1, GSTP1 and UGT1A1 in blood lymphocytes was measured using quantitative PCR. An indirect response model was employed to relate the concentration of DIM to the expression of the genes NQO1, GSTP1 and UGT1A1, which were chosen as PD markers for DIM. After i.v. administration, the plasma concentration of DIM declined quickly, and the expression of target genes increased significantly, peaking at 1-2 h and then returning to basal levels after 24 h. The parameters in the PK-PD model were estimated. The PK-PD model aptly described the time delay and magnitude of gene expression induced by DIM. Our results indicate that DIM is effective at inducing various phase II DME, which are capable of detoxify carcinogens. This PK-PD modeling approach provides a framework for evaluating the acute effects of DIM or other similar drugs in clinical trials.


Subject(s)
Anticarcinogenic Agents/pharmacokinetics , Gene Expression Regulation, Enzymologic/drug effects , Glucuronosyltransferase/genetics , Glutathione S-Transferase pi/genetics , Indoles/pharmacokinetics , Models, Biological , NAD(P)H Dehydrogenase (Quinone)/genetics , Animals , Anticarcinogenic Agents/blood , Anticarcinogenic Agents/pharmacology , Indoles/blood , Indoles/pharmacology , Injections, Intravenous , Male , Metabolic Detoxication, Phase II , Rats, Sprague-Dawley
18.
Drug Metab Dispos ; 42(11): 1890-905, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25122564

ABSTRACT

Subcutaneous injection is an important route of administration for therapeutic proteins that provides several advantages over other modes of parenteral delivery. Despite extensive clinical use, the exact mechanism underlying subcutaneous absorption of proteins is not completely understood, and the accuracy of prediction of absorption of biotherapeutics in humans remains unsatisfactory. This review summarizes a variety of models that have been developed for describing the pharmacokinetics of therapeutic proteins administered by subcutaneous injection, including single- and dual-pathway absorption models. Modeling of the lymphatic uptake and redistribution, absorption of monoclonal antibodies and insulin, and population analysis of protein absorption are discussed. The review also addresses interspecies modeling and prediction of absorption in humans, highlights important factors affecting the absorption processes, and suggests approaches for future development of mechanism-based absorption models.


Subject(s)
Models, Biological , Proteins/pharmacokinetics , Skin Absorption , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Area Under Curve , Biological Availability , Humans , Infusions, Subcutaneous , Insulin/pharmacokinetics , Insulin/therapeutic use , Proteins/therapeutic use
19.
Pharm Res ; 31(12): 3265-73, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24852895

ABSTRACT

PURPOSE: To investigate the effect of dose level and anatomical site of injection on the pharmacokinetics of rituximab in mice, and to evaluate the utility of a pharmacokinetic model for describing interspecies differences in subcutaneous absorption between mice and rats. METHODS: Rituximab serum concentrations were measured following intravenous and subcutaneous administration at the back and abdomen of mice. Several approaches were compared for scaling model parameters from estimated values in rats. RESULTS: The bioavailability of rituximab following subcutaneous injection was inversely related to the dose level and was dependent on the site of injection in mice. The overall rate of absorption was faster in mice as compared to rats. Subcutaneous absorption profiles were well described using the proposed structural model, in which the total receptor concentration, the affinity of rituximab to the receptor, and the degradation rate constant were assumed to be species independent. CONCLUSIONS: Subcutaneous absorption processes show similar trends in rats and mice, although the magnitude differs between species. A mathematical model that combines the absorption of free and bound antibody with presystemic degradation successfully captured rituximab pharmacokinetics in both species, and approaches for sharing and scaling parameters between species were identified.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Animals , Antibodies, Monoclonal, Murine-Derived/administration & dosage , Antineoplastic Agents/administration & dosage , Biological Availability , Body Weight , Dose-Response Relationship, Drug , Injections, Intravenous , Injections, Subcutaneous , Male , Mice , Mice, Inbred C57BL , Models, Statistical , Rats , Rituximab , Skin Absorption , Species Specificity , Subcutaneous Absorption
20.
Pharm Res ; 31(1): 35-45, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23793994

ABSTRACT

PURPOSE: To investigate the biodistribution of amphotericin B (AmB) in mice and rats following administration of liposomal AmB (AmBisome®) using a physiologically-based pharmacokinetic (PBPK) modeling framework and to utilize this approach for predicting AmBisome® pharmacokinetics in human tissues. METHODS: AmB plasma and tissue concentration-time data, following single and multiple intravenous administration of nonliposomal and liposomal AmB to mice and rats, were extracted from literature. The whole-body PBPK model was constructed and incorporated nonliposomal and liposomal subcompartments. Various structural models for individual organs were evaluated. Allometric relationships were incorporated into the model to scale parameters based on species body weight. RESULTS: A non-Michaelis-Menten mechanism was included into the structure of the liver and spleen liposomal compartments to describe saturable uptake of particles by the reticuloendothelial system. The model successfully described plasma and tissue pharmacokinetics of AmB after administration of AmBisome® to rats and mice. CONCLUSIONS: The dual PBPK model demonstrated good predictive performance by reasonably simulating AmB exposure in human tissues. This modeling framework can be potentially utilized for optimizing AmBisome® therapy in humans and for investigating pathophysiological factors controlling AmB pharmacokinetics and pharmacodynamics.


Subject(s)
Amphotericin B/pharmacokinetics , Tissue Distribution/physiology , Amphotericin B/blood , Animals , Antifungal Agents/blood , Body Weight/physiology , Humans , Liposomes/pharmacokinetics , Liver/metabolism , Mice , Rats , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL