ABSTRACT
Mucociliary clearance of the airways is accomplished by cilia-mediated laminar mucus flow along the planar epithelial surface. Maintenance of the highly specific architecture of the ciliated airway epithelium with columnar-shaped epithelial cells and tightening of the epithelial barrier is mainly attributed to the F-actin cytoskeleton. Recently, members of the highly conserved family of septin proteins have been shown to play crucial roles in ciliated tissue. These GTP-binding proteins form hetero-oligomeric complexes and assemble higher-order cytoskeletal structures such as filaments, bundles and ring-like structures such as a membrane diffusion barrier at the ciliary base. Here we analyzed the subcellular and sub-ciliary localization of various septin proteins by immunofluorescence imaging of airway epithelial cells. In addition to cytoplasmic localization we found that septins are either enriched at the apical cell cortex including the ciliary bases (septin-2, -4, -6, and -7), or show axonemal staining (septin-2, -7, -9 and -11) or specifically localize to ciliary sub-compartments (septin-8 and -9). The distinct localization of septins suggests structural functions as cytoskeletal components and as elements of the mechanical barrier at the apical cell cortex. Furthermore, the tight association of septin-8 and -9 with the ciliary compartment indicates a possible involvement in cilia-specific functions and cilia-related diseases.
Subject(s)
Epithelial Cells/metabolism , Septins/metabolism , Animals , Cilia/metabolism , Cilia/ultrastructure , Cytoskeleton/metabolism , Epithelial Cells/ultrastructure , HEK293 Cells , Humans , Mice , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Trachea/cytology , Trachea/metabolismABSTRACT
Glanzmann thrombasthenia (GT) is an autosomal recessive bleeding disorder characterised by quantitative and/or qualitative defects of the platelet glycoprotein (GP) IIb/IIIa complex, also called integrin αIIbß3. αIIbß3 is well known as a platelet fibrinogen receptor and mediates platelet aggregation, firm adhesion, and spreading. This study describes the molecular genetic analyses of 19 patients with GT who were diagnosed on the basis of clinical parameters and platelet analyses. The patients' bleeding signs include epistaxis, mucocutaneous bleeding, haematomas, petechiae, gastrointestinal bleeding, and menorrhagia. Homozygous or compound heterozygous mutations in ITGA2B or ITGB3 were identified as causing GT by sequencing of genomic DNA. All exons including exon/intron boundaries of both genes were analysed. In a patient with an intronic mutation, splicing of mRNA was analysed using reverse transcriptase (RT)-PCR of platelet-derived RNA. In short, 16 of 19 patients revealed 27 different mutations (ITGA2B: n=17, ITGB3: n=10). Seventeen of these mutations have not been published to date. Mutations in ITGA2B or ITGB3 were identified as causing GT in 16 patients. We detected a total of 27 mutations in ITGA2B and ITGB3 including 17 novel missense, nonsense, frameshift and splice site mutations. In addition, three patients revealed no molecular genetic anomalies in ITGA2B or ITGB3 that could explain the suspected diagnosis of GT. We assume that these patients may harbour defects in a regulatory element affecting the transcription of these genes, or other proteins may exist that are important for activating the αIIbß3 complex that may be affected.