Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
PLoS Genet ; 17(12): e1009971, 2021 12.
Article in English | MEDLINE | ID: mdl-34965247

ABSTRACT

Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.


Subject(s)
Electron Transport Complex I/genetics , Osteosarcoma/genetics , RNA, Long Noncoding/genetics , RecQ Helicases/genetics , Rothmund-Thomson Syndrome/genetics , Adenosine Triphosphate/biosynthesis , Cell Proliferation/drug effects , Cell Respiration/drug effects , Cellular Senescence/genetics , Electron Transport Complex I/antagonists & inhibitors , Gene Expression Regulation, Developmental/genetics , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation/genetics , Osteoblasts/drug effects , Osteogenesis/genetics , Osteosarcoma/complications , Osteosarcoma/pathology , Oxadiazoles/pharmacology , Oxidative Phosphorylation/drug effects , Piperidines/pharmacology , Rothmund-Thomson Syndrome/complications , Rothmund-Thomson Syndrome/pathology
2.
PLoS Comput Biol ; 18(2): e1009841, 2022 02.
Article in English | MEDLINE | ID: mdl-35148308

ABSTRACT

While aerobic glycolysis, or the Warburg effect, has for a long time been considered a hallmark of tumor metabolism, recent studies have revealed a far more complex picture. Tumor cells exhibit widespread metabolic heterogeneity, not only in their presentation of the Warburg effect but also in the nutrients and the metabolic pathways they are dependent on. Moreover, tumor cells can switch between different metabolic phenotypes in response to environmental cues and therapeutic interventions. A framework to analyze the observed metabolic heterogeneity and plasticity is, however, lacking. Using a mechanistic model that includes the key metabolic pathways active in tumor cells, we show that the inhibition of phosphofructokinase by excess ATP in the cytoplasm can drive a preference for aerobic glycolysis in fast-proliferating tumor cells. The differing rates of ATP utilization by tumor cells can therefore drive heterogeneity with respect to the presentation of the Warburg effect. Building upon this idea, we couple the metabolic phenotype of tumor cells to their migratory phenotype, and show that our model predictions are in agreement with previous experiments. Next, we report that the reliance of proliferating cells on different anaplerotic pathways depends on the relative availability of glucose and glutamine, and can further drive metabolic heterogeneity. Finally, using treatment of melanoma cells with a BRAF inhibitor as an example, we show that our model can be used to predict the metabolic and gene expression changes in cancer cells in response to drug treatment. By making predictions that are far more generalizable and interpretable as compared to previous tumor metabolism modeling approaches, our framework identifies key principles that govern tumor cell metabolism, and the reported heterogeneity and plasticity. These principles could be key to targeting the metabolic vulnerabilities of cancer.


Subject(s)
Glycolysis , Neoplasms , Adenosine Triphosphate/metabolism , Citric Acid Cycle , Humans , Neoplasms/metabolism , Phosphofructokinase-1/metabolism
3.
Proc Natl Acad Sci U S A ; 116(9): 3909-3918, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30733294

ABSTRACT

Metabolic plasticity enables cancer cells to switch their metabolism phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) during tumorigenesis and metastasis. However, it is still largely unknown how cancer cells orchestrate gene regulation to balance their glycolysis and OXPHOS activities. Previously, by modeling the gene regulation of cancer metabolism we have reported that cancer cells can acquire a stable hybrid metabolic state in which both glycolysis and OXPHOS can be used. Here, to comprehensively characterize cancer metabolic activity, we establish a theoretical framework by coupling gene regulation with metabolic pathways. Our modeling results demonstrate a direct association between the activities of AMPK and HIF-1, master regulators of OXPHOS and glycolysis, respectively, with the activities of three major metabolic pathways: glucose oxidation, glycolysis, and fatty acid oxidation. Our model further characterizes the hybrid metabolic state and a metabolically inactive state where cells have low activity of both glycolysis and OXPHOS. We verify the model prediction using metabolomics and transcriptomics data from paired tumor and adjacent benign tissue samples from a cohort of breast cancer patients and RNA-sequencing data from The Cancer Genome Atlas. We further validate the model prediction by in vitro studies of aggressive triple-negative breast cancer (TNBC) cells. The experimental results confirm that TNBC cells can maintain a hybrid metabolic phenotype and targeting both glycolysis and OXPHOS is necessary to eliminate their metabolic plasticity. In summary, our work serves as a platform to symmetrically study how tuning gene activity modulates metabolic pathway activity, and vice versa.


Subject(s)
AMP-Activated Protein Kinases/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Metabolic Networks and Pathways/genetics , Triple Negative Breast Neoplasms/genetics , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Fatty Acids/metabolism , Female , Glucose/metabolism , Glycolysis/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/metabolism , Models, Theoretical , Oxidative Phosphorylation , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
4.
Br J Cancer ; 124(12): 1902-1911, 2021 06.
Article in English | MEDLINE | ID: mdl-33859341

ABSTRACT

Cancer cells have the plasticity to adjust their metabolic phenotypes for survival and metastasis. A developmental programme known as epithelial-to-mesenchymal transition (EMT) plays a critical role during metastasis, promoting the loss of polarity and cell-cell adhesion and the acquisition of motile, stem-cell characteristics. Cells undergoing EMT or the reverse mesenchymal-to-epithelial transition (MET) are often associated with metabolic changes, as the change in phenotype often correlates with a different balance of proliferation versus energy-intensive migration. Extensive crosstalk occurs between metabolism and EMT, but how this crosstalk leads to coordinated physiological changes is still uncertain. The elusive connection between metabolism and EMT compromises the efficacy of metabolic therapies targeting metastasis. In this review, we aim to clarify the causation between metabolism and EMT on the basis of experimental studies, and propose integrated theoretical-experimental efforts to better understand the coupled decision-making of metabolism and EMT.


Subject(s)
Energy Metabolism/physiology , Epithelial-Mesenchymal Transition/physiology , Neoplasms/pathology , Animals , Cell Differentiation , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasm Metastasis , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/physiology
5.
Inorg Chem ; 54(6): 2616-25, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25732726

ABSTRACT

Herein we have established a strategy for the synthesis of highly luminescent and biocompatible europium-doped lanthanum orthophosphate (La0.85PO4Eu0.15(3+)) nanorods. The structure and morphogenesis of these nanorods have been probed by XRD, SEM, and TEM/HRTEM techniques. The XRD result confirms that the as-synthesized nanorods form in a monazite phase with a monoclinic crystal structure. Furthermore, the surface morphology shows that the synthesized nanorods have an average diameter of ∼90 nm and length of ∼2 µm. The HRTEM images show clear lattice fringes that support the presence of better crystal quality and enhanced photoluminescence hypersensitive red emission at 610 nm ((5)D0-(7)F2) upon 394 nm wavelength excitation. Furthermore, time-resolved spectroscopy and an MTT assay of these luminescent nanorods demonstrate a photoluminescent decay time of milliseconds with nontoxic behavior. Hence, these obtained results suggest that the as-synthesized luminescent nanorods could be potentially used in invisible security ink and high-contrast bioimaging applications.


Subject(s)
Biocompatible Materials/chemistry , Drug Design , Europium/chemistry , Luminescent Agents/chemistry , Nanotubes/chemistry , Phosphates/chemistry , Cell Line, Tumor , Humans , Molecular Imaging
6.
Cancer Res ; 84(2): 291-304, 2024 01 16.
Article in English | MEDLINE | ID: mdl-37906431

ABSTRACT

Approximately one-third of endocrine-treated women with estrogen receptor alpha-positive (ER+) breast cancers are at risk of recurrence due to intrinsic or acquired resistance. Thus, it is vital to understand the mechanisms underlying endocrine therapy resistance in ER+ breast cancer to improve patient treatment. Mitochondrial fatty acid ß-oxidation (FAO) has been shown to be a major metabolic pathway in triple-negative breast cancer (TNBC) that can activate Src signaling. Here, we found metabolic reprogramming that increases FAO in ER+ breast cancer as a mechanism of resistance to endocrine therapy. A metabolically relevant, integrated gene signature was derived from transcriptomic, metabolomic, and lipidomic analyses in TNBC cells following inhibition of the FAO rate-limiting enzyme carnitine palmitoyl transferase 1 (CPT1), and this TNBC-derived signature was significantly associated with endocrine resistance in patients with ER+ breast cancer. Molecular, genetic, and metabolomic experiments identified activation of AMPK-FAO-oxidative phosphorylation (OXPHOS) signaling in endocrine-resistant ER+ breast cancer. CPT1 knockdown or treatment with FAO inhibitors in vitro and in vivo significantly enhanced the response of ER+ breast cancer cells to endocrine therapy. Consistent with the previous findings in TNBC, endocrine therapy-induced FAO activated the Src pathway in ER+ breast cancer. Src inhibitors suppressed the growth of endocrine-resistant tumors, and the efficacy could be further enhanced by metabolic priming with CPT1 inhibition. Collectively, this study developed and applied a TNBC-derived signature to reveal that metabolic reprogramming to FAO activates the Src pathway to drive endocrine resistance in ER+ breast cancer. SIGNIFICANCE: Increased fatty acid oxidation induced by endocrine therapy activates Src signaling to promote endocrine resistance in breast cancer, which can be overcome using clinically approved therapies targeting FAO and Src.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Phosphorylation , Signal Transduction , Fatty Acids/metabolism , Drug Resistance, Neoplasm/genetics
7.
Cancer Lett ; 587: 216724, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38373689

ABSTRACT

CD24 is a well-characterized breast cancer (BC) stem cell (BCSC) marker. Primary breast tumor cells having CD24-negativity together with CD44-positivity is known to maintain high metastatic potential. However, the functional role of CD24 gene in triple-negative BC (TNBC), an aggressive subtype of BC, is not well understood. While the significance of CD24 in regulating immune pathways is well recognized in previous studies, the significance of CD24 low expression in onco-signaling and metabolic rewiring is largely unknown. Using CD24 knock-down and over-expression TNBC models, our in vitro and in vivo analysis suggest that CD24 is a tumor suppressor in metastatic TNBC. Comprehensive in silico gene expression analysis of breast tumors followed by lipidomic and metabolomic analyses of CD24-modulated cells revealed that CD24 negativity induces mitochondrial oxidative phosphorylation and reprograms TNBC metabolism toward the fatty acid beta-oxidation (FAO) pathway. CD24 silencing activates PPARα-mediated regulation of FAO in TNBC cells. Further analysis using reverse-phase protein array and its validation using CD24-modulated TNBC cells and xenograft models nominated CD24-NF-κB-CPT1A signaling pathway as the central regulatory mechanism of CD24-mediated FAO activity. Overall, our study proposes a novel role of CD24 in metabolic reprogramming that can open new avenues for the treatment strategies for patients with metastatic TNBC.


Subject(s)
NF-kappa B , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , PPAR alpha/genetics , Cell Line, Tumor , Fatty Acids/metabolism , CD24 Antigen/genetics , CD24 Antigen/metabolism
8.
iScience ; 27(6): 109995, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868185

ABSTRACT

The canonical mechanism behind tamoxifen's therapeutic effect on estrogen receptor α/ESR1+ breast cancers is inhibition of ESR1-dependent estrogen signaling. Although ESR1+ tumors expressing wild-type p53 were reported to be more responsive to tamoxifen (Tam) therapy, p53 has not been factored into choice of this therapy and the mechanism underlying the role of p53 in Tam response remains unclear. In a window-of-opportunity trial on patients with newly diagnosed stage I-III ESR1+/HER2/wild-type p53 breast cancer who were randomized to arms with or without Tam prior to surgery, we reveal that the ESR1-p53 interaction in tumors was inhibited by Tam. This resulted in functional reactivation of p53 leading to transcriptional reprogramming that favors tumor-suppressive signaling, as well as downregulation of oncogenic pathways. These findings illustrating the convergence of ESR1 and p53 signaling during Tam therapy enrich mechanistic understanding of the impact of p53 on the response to Tam therapy.

9.
Proc Natl Acad Sci U S A ; 107(34): 15081-6, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20696891

ABSTRACT

Estrogen receptor alpha (ERalpha) plays an important role in the onset and progression of breast cancer, whereas p53 functions as a major tumor suppressor. We previously reported that ERalpha binds to p53, resulting in inhibition of transcriptional regulation by p53. Here, we report on the molecular mechanisms by which ERalpha suppresses p53's transactivation function. Sequential ChIP assays demonstrated that ERalpha represses p53-mediated transcriptional activation in human breast cancer cells by recruiting nuclear receptor corepressors (NCoR and SMRT) and histone deacetylase 1 (HDAC1). RNAi-mediated down-regulation of NCoR resulted in increased endogenous expression of the cyclin-dependent kinase (CDK)-inhibitor p21(Waf1/Cip1) (CDKN1A) gene, a prototypic transcriptional target of p53. While 17beta-estradiol (E2) enhanced ERalpha binding to p53 and inhibited p21 transcription, antiestrogens decreased ERalpha recruitment and induced transcription. The effects of estrogen and antiestrogens on p21 transcription were diametrically opposite to their known effects on the conventional ERE-containing ERalpha target gene, pS2/TFF1. These results suggest that ERalpha uses dual strategies to promote abnormal cellular proliferation: enhancing the transcription of ERE-containing proproliferative genes and repressing the transcription of p53-responsive antiproliferative genes. Importantly, ERalpha binds to p53 and inhibits transcriptional activation by p53 in stem/progenitor cell-containing murine mammospheres, suggesting a potential role for the ER-p53 interaction in mammary tissue homeostasis and cancer formation. Furthermore, retrospective studies analyzing response to tamoxifen therapy in a subset of patients with ER-positive breast cancer expressing either wild-type or mutant p53 suggest that the presence of wild-type p53 is an important determinant of positive therapeutic response.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Base Sequence , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Primers/genetics , Estradiol/pharmacology , Estrogen Receptor Modulators/pharmacology , Female , Genes, p53 , Histone Deacetylase 1/metabolism , Humans , Mice , Mice, Inbred C57BL , Models, Biological , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Neoplastic Stem Cells/metabolism , Promoter Regions, Genetic , Tamoxifen/pharmacology , Transcriptional Activation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Nano Lett ; 12(2): 844-9, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22216895

ABSTRACT

Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating optical and electronic properties. These have been synthesized either by nanolithography or from starting materials such as graphene oxide (GO) by the chemical breakdown of their extended planar structure, both of which are multistep tedious processes. Here, we report that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts. The as-produced GQDs, in the size range of 1-4 nm, show two-dimensional morphology, most of which present zigzag edge structure, and are 1-3 atomic layers thick. The photoluminescence of the GQDs can be tailored through varying the size of the GQDs by changing process parameters. Due to the luminescence stability, nanosecond lifetime, biocompatibility, low toxicity, and high water solubility, these GQDs are demonstrated to be excellent probes for high contrast bioimaging and biosensing applications.


Subject(s)
Antineoplastic Agents/chemistry , Carbon/chemistry , Graphite/chemistry , Quantum Dots , Antineoplastic Agents/pharmacology , Carbon/pharmacology , Carbon Fiber , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Fluorescence , Graphite/pharmacology , Humans , Particle Size , Solubility , Structure-Activity Relationship , Surface Properties
11.
Elife ; 122023 Jul 07.
Article in English | MEDLINE | ID: mdl-37417957

ABSTRACT

Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.


Subject(s)
Glucose , Non-alcoholic Fatty Liver Disease , Mice , Animals , Glucose/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Flavin-Adenine Dinucleotide/metabolism , Fatty Acids/metabolism , Liver/metabolism , Fasting/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidation-Reduction , Flavoproteins/metabolism
12.
Small ; 8(19): 3028-34, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-22807340

ABSTRACT

Highly luminescent-paramagnetic nanophosphors have a seminal role in biotechnology and biomedical research due to their potential applications in biolabeling, bioimaging, and drug delivery. Herein, the synthesis of high-quality, ultrafine, europium-doped yttrium oxide nanophosphors (Y(1.9)O(3):Eu(0.1)(3+)) using a modified sol-gel technique is reported and in vitro fluorescence imaging studies are demonstrated in human breast cancer cells. These highly luminescent nanophosphors with an average particle size of ≈6 nm provide high-contrast optical imaging and decreased light scattering. In vitro cellular uptake is shown by fluorescence microscopy, which visualizes the characteristic intense hypersensitive red emission of Eu(3+) peaking at 610 nm ((5)D(0)-(7)F(2)) upon 246 nm UV light excitation. No apparent cytotoxicity is observed. Subsequently, time-resolved emission spectroscopy and SQUID magnetometry measurements demonstrate a photoluminescence decay time in milliseconds and paramagnetic behavior, which assure applications of the nanophosphors in biomedical studies.


Subject(s)
Breast Neoplasms/pathology , Europium/chemistry , Luminescent Agents/chemistry , Metal Nanoparticles/chemistry , Yttrium/chemistry , Cell Line, Tumor , Humans , Microscopy, Electron, Transmission , Optical Imaging , X-Ray Diffraction
13.
Mol Cancer ; 8: 15, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19267898

ABSTRACT

BACKGROUND: Scaffold Attachment Factor B1 (SAFB1) is a multifunctional protein which has been implicated in breast cancer previously. We recently generated SAFB1 knockout mice (SAFB1-/-), but pleiotropic phenotypes including high lethality, dwarfism associated with low IGF-I levels, and infertility and subfertility in male and female mice, respectively, do not allow for straightforward tumorigenesis studies in these mice. Therefore, we asked whether SAFB1 heterozygosity would influence tumor development and progression in MMTV-Wnt-1 oncomice or DMBA induced tumorigenicity, in a manner consistent with haploinsufficiency of the remaining allele. METHODS: We crossed female SAFB1+/- (C57B6/129) mice with male MMTV-Wnt-1 (C57B6/SJL) mice to obtain SAFB1+/+/Wnt-1, SAFB1+/-/Wnt-1, and SAFB1+/- mice. For the chemical induced tumorigenesis study we treated 8 weeks old SAFB1+/- and SAFB+/+ BALB/c mice with 1 mg DMBA once per week for 6 weeks. Animals were monitored for tumor incidence and tumor growth. Tumors were characterized by performing H&E, and by staining for markers of proliferation and apoptosis. RESULTS: We did not detect significant differences in tumor incidence and growth between SAFB1+/+/Wnt-1 and SAFB1+/-/Wnt-1 mice, and between DMBA-treated SAFB1+/+ and SAFB1+/-mice. Histological evaluation of tumors showed that SAFB1 heterozygosity did not lead to changes in proliferation or apoptosis. There were, however, significant differences in the distribution of tumor histologies with an increase in papillary and cribriform tumors, and a decrease in squamous tumors in the SAFB1+/-/Wnt-1 compared to the SAFB1+/+/Wnt-1 tumors. Of note, DMBA treatment resulted in shortened survival of SAFB1+/- mice compared to their wildtype littermates, however this trend did not reach statistical significance. CONCLUSION: Our data show that SAFB1 heterozygosity does not influence Wnt-1 or DMBA-induced mammary tumorigenesis.


Subject(s)
DNA-Binding Proteins/genetics , Heterozygote , RNA-Binding Proteins/genetics , Wnt1 Protein/genetics , 9,10-Dimethyl-1,2-benzanthracene , Animals , Carcinogens , DNA-Binding Proteins/metabolism , Female , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, Knockout , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , RNA-Binding Proteins/metabolism , Wnt1 Protein/metabolism
15.
Nat Med ; 25(11): 1684-1690, 2019 11.
Article in English | MEDLINE | ID: mdl-31636454

ABSTRACT

Dysregulation of the mammalian target of rapamycin (mTOR) signaling, which is mediated by two structurally and functionally distinct complexes, mTORC1 and mTORC2, has been implicated in several neurological disorders1-3. Individuals carrying loss-of-function mutations in the phosphatase and tensin homolog (PTEN) gene, a negative regulator of mTOR signaling, are prone to developing macrocephaly, autism spectrum disorder (ASD), seizures and intellectual disability2,4,5. It is generally believed that the neurological symptoms associated with loss of PTEN and other mTORopathies (for example, mutations in the tuberous sclerosis genes TSC1 or TSC2) are due to hyperactivation of mTORC1-mediated protein synthesis1,2,4,6,7. Using molecular genetics, we unexpectedly found that genetic deletion of mTORC2 (but not mTORC1) activity prolonged lifespan, suppressed seizures, rescued ASD-like behaviors and long-term memory, and normalized metabolic changes in the brain of mice lacking Pten. In a more therapeutically oriented approach, we found that administration of an antisense oligonucleotide (ASO) targeting mTORC2's defining component Rictor specifically inhibits mTORC2 activity and reverses the behavioral and neurophysiological abnormalities in adolescent Pten-deficient mice. Collectively, our findings indicate that mTORC2 is the major driver underlying the neuropathophysiology associated with Pten-deficiency, and its therapeutic reduction could represent a promising and broadly effective translational therapy for neurological disorders where mTOR signaling is dysregulated.


Subject(s)
Mechanistic Target of Rapamycin Complex 2/genetics , Nervous System Diseases/genetics , PTEN Phosphohydrolase/genetics , TOR Serine-Threonine Kinases/genetics , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Humans , Loss of Function Mutation/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Mice, Knockout , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , PTEN Phosphohydrolase/deficiency , Rapamycin-Insensitive Companion of mTOR Protein/antagonists & inhibitors , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Tuberous Sclerosis Complex 1 Protein/genetics
16.
Cell Metab ; 30(2): 261-273.e6, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31279675

ABSTRACT

Anabolic resistance and impaired myocellular quality contribute to age-related sarcopenia, which exacerbates with obesity. Diet-induced muscle mass loss is attenuated by resistance or aerobic plus resistance exercise compared to aerobic exercise in obese elderly. We assessed chronic effects of weight loss plus different exercise modalities on muscle protein synthesis response to feeding and myocellular quality. Obese older adults were randomized to a weight-management program plus aerobic, resistance, or combined aerobic and resistance exercise or to control. Participants underwent vastus lateralis biopsies at baseline and 6 months. Muscle protein synthesis rate increased more in resistance and combined than in control. Autophagy mediators' expression decreased more in combined than in aerobic, which experienced a higher increase in inflammation and mitochondrial regulators' expression. In obese elderly, combined aerobic and resistance exercise is superior to either mode independently for improving muscle protein synthesis and myocellular quality, thereby maintaining muscle mass during weight-loss therapy.


Subject(s)
Exercise , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Obesity/metabolism , Resistance Training , Aged , Humans , Weight Loss
17.
J Natl Cancer Inst ; 111(11): 1202-1215, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30990221

ABSTRACT

BACKGROUND: Anti-tumorigenic vs pro-tumorigenic roles of estrogen receptor-beta (ESR2) in breast cancer remain unsettled. We investigated the potential of TP53 status to be a determinant of the bi-faceted role of ESR2 and associated therapeutic implications for triple negative breast cancer (TNBC). METHODS: ESR2-TP53 interaction was analyzed with multiple assays including the in situ proximity ligation assay. Transcriptional effects on TP53-target genes and cell proliferation in response to knocking down or overexpressing ESR2 were determined. Patient survival according to ESR2 expression levels and TP53 mutation status was analyzed in the basal-like TNBC subgroup in the Molecular Taxonomy of Breast Cancer International Consortium (n = 308) and Roswell Park Comprehensive Cancer Center (n = 46) patient cohorts by univariate Cox regression and log-rank test. All statistical tests are two-sided. RESULTS: ESR2 interaction with wild-type and mutant TP53 caused pro-proliferative and anti-proliferative effects, respectively. Depleting ESR2 in cells expressing wild-type TP53 resulted in increased expression of TP53-target genes CDKN1A (control group mean [SD] = 1 [0.13] vs ESR2 depletion group mean [SD] = 2.08 [0.24], P = .003) and BBC3 (control group mean [SD] = 1 [0.06] vs ESR2 depleted group mean [SD] = 1.92 [0.25], P = .003); however, expression of CDKN1A (control group mean [SD] = 1 [0.21] vs ESR2 depleted group mean [SD] = 0.56 [0.12], P = .02) and BBC3 (control group mean [SD] = 1 [0.03] vs ESR2 depleted group mean [SD] = 0.55 [0.09], P = .008) was decreased in cells expressing mutant TP53. Overexpressing ESR2 had opposite effects. Tamoxifen increased ESR2-mutant TP53 interaction, leading to reactivation of TP73 and apoptosis. High levels of ESR2 expression in mutant TP53-expressing basal-like tumors is associated with better prognosis (Molecular Taxonomy of Breast Cancer International Consortium cohort: log-rank P = .001; hazard ratio = 0.26, 95% confidence interval = 0.08 to 0.84, univariate Cox P = .02). CONCLUSIONS: TP53 status is a determinant of the functional duality of ESR2. Our study suggests that ESR2-mutant TP53 combination prognosticates survival in TNBC revealing a novel strategy to stratify TNBC for therapeutic intervention potentially by repurposing tamoxifen.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinogenesis/pathology , Estrogen Receptor beta/metabolism , Mutant Proteins/metabolism , Mutation , Triple Negative Breast Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Proliferation , Cohort Studies , Estrogen Receptor beta/genetics , Female , Humans , Mutant Proteins/genetics , Prognosis , Survival Rate , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
19.
Int J Cancer ; 123(1): 66-72, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18404683

ABSTRACT

We have previously reported on the relevance of the prevalence of CD44(+)/CD24(-/low) cells in primary breast tumors. To study regulation of CD24, we queried a number of publicly available expression array studies in breast cancer cells and found that CD24 was downregulated upon estrogen treatment. We confirmed this estrogen-mediated repression of CD24 mRNA by quantitative real-time PCR in MCF7, T47D and ZR75-1 cells. Repression was also seen at the protein level as measured by flow cytometry. CD24 was not downregulated in the ER alpha negative MDA-MB-231 cells suggesting that ER alpha was necessary. This was further confirmed by ER alpha silencing in MCF7 cells resulting in increased CD24 levels and by reintroduction of ER alpha into C4-12 cells resulting in decreased CD24 levels. Estrogen treatment did not alter half-life of CD24 mRNA and new protein synthesis was not essential for repression, suggesting a primary transcriptional effect. Histone deacetylase inhibition by Trichostatin A completely abolished the repression, but decrease of the ER alpha corepressors NCoR, LCoR, RIP140, silencing mediator of retinoid and thyroid hormone receptors, SAFB1 and SAFB2 by siRNA or overexpression of SAFB2, NCoR and silencing mediator of retinoid and thyroid hormone receptors had no effect. In silico promoter analyses led to the identification of two estrogen responsive elements in the CD24 promoter, one of which was able to bind ER alpha as shown by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Together, our results show that CD24 is repressed by estrogen and that this repression is a direct transcriptional effect depending on ER alpha and histone deacetylases.


Subject(s)
Breast Neoplasms/metabolism , CD24 Antigen/genetics , CD24 Antigen/metabolism , Estrogens/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Down-Regulation , Electrophoretic Mobility Shift Assay , Enzyme Inhibitors/pharmacology , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Female , Gene Expression Regulation, Neoplastic , Histone Deacetylase Inhibitors , Humans , Hydroxamic Acids/pharmacology , Polymerase Chain Reaction , Promoter Regions, Genetic , RNA, Messenger/metabolism , Transcription, Genetic
20.
Biotechniques ; 45(2): 165-8, 170-1, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18687065

ABSTRACT

Although three dimensional (3-D) cell culture systems have numerous advantages over traditional monolayer culture, the currently available 3-D cell culture media are cost-prohibitive for regular use by the majority of research laboratories. Here we show a simple system based on avian egg white that supports growth of cells in 3-D, at a significantly decreased cost. Specifically, we show that growth of immortalized human breast epithelial cells (MCF10A) in egg white-based medium results in formation of acini with hollow lumens, apoptotic clearance of the cells in the lumen, and apicobasal polarization comparable to what has been described using established 3-D culture media such as reconstituted basement membrane preparations (BM). There was no significant difference in MCF10A proliferation and acinar size between egg white and BM. We also cultured different established cell lines, oncogene-transformed MCF10A, and mouse mammary epithelial cells in egg white and BM, and observed similar morphology. In summary, our data convincingly argue that egg white can be used as a suitable alternative model for 3-D cell culture studies. We strongly believe that this simple and inexpensive method should allow researchers to perform 3-D cell culture experiments on a regular basis, and result in a dramatic increase of use of the 3-D cell culture in research. Thus, this finding lays the foundation for significantly increased, cost-effective use of 3-D cultures in cell biology.


Subject(s)
Cells, Cultured/cytology , Egg White , Animals , Apoptosis , Cell Proliferation , Collagen , Drug Combinations , Egg Proteins/pharmacology , Humans , Laminin , Proteoglycans
SELECTION OF CITATIONS
SEARCH DETAIL